Laboratorium Pomiarów Zdalnych/ dr hab. Iwona S. Stachlewska

Laboratorium Pomiarów Zdalnych/ dr hab. Iwona S. Stachlewska
Laboratorium: Badawcze
Jednostka organizacyjna: IGF, ZFA
Status: dostępny
Miejsce: ul. Pasteura 5,
Kierownik: Iwona S. Stachlewska
Opiekun techniczny: Wojciech Kumala

The Remote Sensing Laboratory (RS-Lab) was created to perform remote quasi-continuous measurements of optical and microphysical properties of atmospheric aerosols and clouds.
RS-Lab is equipped with different passive and active instruments; the stationary lidar (PollyNeXT), the near-range lidar (NARLa), the mobile EMORAL lidar (Raymetrics), the cloud radar (BASTA), shadowband radiometer (MFR-7), microwave radiometer (HATPRO-G2), and the sun-photometer (CIMEL).
The remote sensing instruments are located at the ground in close vicinity of the Faculty of Physics building (2 stationary lidars), on the measurement platform on the roof of the building (photometer and radiometers), and in the research-van where one of the lidars is permanently installed.
Some of the listed above instruments (EMORAL, BASTA, MFR-7) were temporarily installed at the PolWET station of the Poznan University of Life Sciences at peatland in Rzecin, Poland for long-term POLIMOS campaigns (with intensive operation period during March-October 2018 and June-September 2019). During the first POLIMOS-2018 campaign, aerosol Eddy-covariance and Doppler wind lidar measurements were additionally conducted in Rzecin. During the second POLIMOS-2019 campaign, the microwave radiometer jointed the peatland site instead.
During summer of 2018 and 2019, two 7-days lidar intercomparison campaigns were conducted, during which EMORAL PollyNeXT and NARLa lidars were assessed for performance and data product quality against the EARLINET-ACTRIS reference lidars: POLIS (LMU) and RaLi (INOE).

Research carried out at RS-Lab is financed primarily from the POLIMOS, SAMIRA and MULTIPLY projects of the European Space Agency. We are also realizing NCN-Preludium15 grant. Our work and RS-lab operation is reckognized as strategical for the Institute of Geophysics being therefore strongly supported within internal funding and administrative support at the Faculty of Physics.

The research is carried out in close cooperation with several research institutions TROPOS (Germany), LATMOS (France), INOE (Romania), NOA (Greece), University of Granada (Spain), LMU-MIM (Germany), as well as companies: Raymetrics S.A. (Greece) and Licel GmbH (Germany). The collaboration terms are realized by joint instrument developments (e.g. TROPOS, Raymetrics, Licel), instrument loans (e.g. INOE, LATMOS), collaboration on new data retrieval schemes and synergetic products (e.g. University of Granada, NOA).

The measurements carried out at RS-Lab are used for scientific research conducted within the EARLINET, AERONET, PollyNET, and PolandAOD-NET networks. Therefore the merit support of the PollyNET colleagues, as well as the merit and financial support provided within the frame of the EU funded H2020 ACTRIS projects is crucial for long-term q=high-quality observation aspect of our work.

Contributors to RS-Lab:
Iwona S. Stachlewska, Wojciech Kumala, Łucja Janicka, Dominika Szczepanik, Dongxiang Wang, Olga Zawadzka, Anca Nemuc, Patryk Poczta, Pablo Ortiz-Amezcua, Eleni Tetoni, Karolina Borek, Konstantina Nakoudi.

Former colleagues:
Michał Piądłowski, Paweł Swaczyna, Szymon Migacz, Artur Szkop, Paulina Sokół, Anna Górska, Anna Zielinska-Szkop, Montserrat Costa-Surós, Katarzyna Misiura, Aleksandra Lewczuk.



  1. Zawadzka-Manko, O.; Stachlewska, I.S.; Markowicz, K.M. Near-Real-Time Application of SEVIRI Aerosol Optical Depth Algorithm. Remote Sens. 2020, 12, 1481.

  2. Wang, D., Szczepanik, D., and Stachlewska, I. S.: Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland, Atmos. Chem. Phys., 19, 13097–13128, https://doi.org/10.5194/acp-19-13097-2019, 2019.
  3. Proestakis, E., Amiridis, V., Marinou, E., Binietoglou, I., Ansmann, A., Wandinger, U., Hofer, J., Yorks, J., Nowottnick, E., Makhmudov, A., Papayannis, A., Pietruczuk, A., Gialitaki, A., Apituley, A., Szkop, A., Muñoz Porcar, C., Bortoli, D., Dionisi, D., Althausen, D., Mamali, D., Balis, D., Nicolae, D., Tetoni, E., Liberti, G. L., Baars, H., Mattis, I., Stachlewska, I. S., Voudouri, K. A., Mona, L., Mylonaki, M., Perrone, M. R., Costa, M. J., Sicard, M., Papagiannopoulos, N., Siomos, N., Burlizzi, P., Pauly, R., Engelmann, R., Abdullaev, S., and Pappalardo, G.: EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product, Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, 2019.
  4. Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., et al. (63 co-authors): The unprecedented 2017–2018 stratospheric smoke event: Decay phase and aerosol properties observed with EARLINET, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-615, accepted, 2019.
  5. Stachlewska, I.S.; Samson, M.; Zawadzka, O.; Harenda, K.M.; Janicka, L.; Poczta, P.; Szczepanik, D.; Heese, B.; Wang, D.; Borek, K.; Tetoni, E.; Proestakis, E.; Siomos, N.; Nemuc, A.; Chojnicki, B.H.; Markowicz, K.M.; Pietruczuk, A.; Szkop, A.; Althausen, D.; Stebel, K.; Schuettemeyer, D.; Zehner, C., 2018, Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol, Remote Sensing, vol. 10(3), pp. art. 412, 10.3390/rs10030412
  6. Stachlewska I.S., Zawadzka O., and Engelmann R., 2017, Effect of Heat Wave Conditions on Aerosol Optical Properties Derived from Satellite and Ground-Based Remote Sensing over Poland, Remote Sensing, vol. 9 (11), pp. art. 1199, 10.3390/rs9111199
  7. Stachlewska I.S., Costa-Suros M., Althausen D., 2017, Raman lidar water vapor profiling over Warsaw, Poland, Atmospheric Research, vol. 194, pp. 258-267, 10.1016/j.atmosres.2017.05.004
  8. Ortiz-Amezcua P., Guerrero-Rascado L.L., Granados-Muñoz M.J., Benavent-Oltra J.A., Böckmann Ch., Samaras S., Stachlewska I.S., Janicka L., Baars H., Bohlmann S., Alados-Arboledas L., 2017, Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations, Atmospheric Chemistry and Physics, vol. 17, pp. 5931-5946, 10.5194/acp-17-5931-2017
  9. Janicka L., Stachlewska I.S., Veselovskii I., Baars H., 2017, Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland, Atmospheric Environment, vol. 169, pp. 162-174, 10.1016/j.atmosenv.2017.09.022
  10. Baars H., Kanitz T., Engelmann R., Althausen D., Heese B., Komppula M., Preißler J., Tesche M., Ansmann A., Wandinger U., Lim J.-H., Young Ahn J., Stachlewska I.S., Amiridis V., Marinou E., et al. (45 authors), 2016, An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmospheric Chemistry and Physics., vol. 16, pp. 5111-5137, 10.5194/acp-16-5111-2016
  11. Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., Ansmann, A., 2016, The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmospheric Measurement Techniques, vol. 9, pp. 1767-1784, doi:10.5194/amt-9-1767-2016
  12. Markowicz K.M., Chilinski M.T., Lisok J., Zawadzka O., Stachlewska I.S., Janicka L., Rozwadowska A., Makuch P., Pakszys P., Zielinski T., Petelski T., Posyniak M., Pietruczuk A., Szkop A., Westphal D.L., 2016, Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013, Journal of Aerosol Science, vol. 101, pp. 156–173, 10.1016/j.jaerosci.2016.08.006
  13. Sokół P., Stachlewska I.S., Ungureanu I., Stefan S., 2014, Evaluation of the Boundary Layer Morning Transition Using the CL-31 Ceilometer Signals, Acta Geophysica, vol. 62 (2), pp. 367-380, 10.2478/s11600-013-0158-5
  14. Nemuc A., Stachlewska I.S., Vasilescu J., Górska A., Nicolae D., Talianu C., 2014, Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophysica, vol. 62 (2), pp. 350-366, 10.2478/s11600-013-0180-7
  15. Stachlewska I.S., Piądłowski M., Migacz S., Szkop A., Zielińska A.J, Swaczyna P.L., 2012, Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophysica, vol. 60 (5), pp. 1386-1412, 10.2478/s11600-012-0054-4
  16. Markowicz, K.M., Zielinski T., Pietruczuk A., Posyniak M., Zawadzka O., Makuch P., Stachlewska I.S., Jagodnicka A.K., Petelski T., Kumala W., Sobolewski P., Stacewicz T., 2012, Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmospheric Environment, vol. 48, pp. 66-75, 10.1016/j.atmosenv.2011.07.015

Powiązane dokumenty:

« Cofnij