EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton

Bogdanova S, Gorbatschev R, Grad M, Janik T, Guterch A, Kozlovskaya E, Motuza G, Skridlaite G, Starostenko V, Taran L, EUROBRIDGE and POLONAISE WORKING GROUPS (m. in. Wilde-Piórko M)

Geological Society Memoir

32, 2006, 599-625

The Palaeoproterozoic crust and upper mantle in the region between the Ukrainian and Baltic shields of the East European Craton were built up finally during collision of the previously independent Fennoscandian and Sarmatian crustal segments at c. 1.8-1.7 Ga. EUROBRIDGE seismic profiling and geophysical modelling across the southwestern part of the Craton suggest that the Central Belarus Suture Zone is the junction between the two colliding segments. This junction is marked by strong deformation of the crust and the presence of a metamorphic core complex. At 1.80-1.74 Ga, major late to post-collisional extension and magmatism affected the part of Sarmatia adjoining the Central Belarus Zone and generated a high-velocity layer at the base of the crust. Other sutures separating terranes of different ages are found within Sarmatia and in the Polish-Lithuanian part of Fennoscandia. While Fennoscandia and Sarmatia were still a long distance apart, orogeny was dominantly accretionary. The accreted Palaeoproterozoic terranes in the Baltic-Belarus region of Fennoscandia are all younger than 2.0 Ga (2.0-1.9, 1.90-1.85 and 1.84-1.82 Ga), whereas those in Sarmatia have ages of c. 2.2-2.1 and 2.0-1.95 Ga. Lithospheric deformation and magmatism at c. 1.50-1.45 Ga, and Devonian rifting, are also defined by the EUROBRIDGE seismic and gravity models.