IGF



Publikacja

Seasonal melting of surface water ice condensing in martian gullies

Kossacki K.J., Markiewicz W.J.,

Typ publikacji:
Publikacja naukowa recenzowana (Science Citation Index)

ICARUS

171(2), 2004, 272-283, 10.1016/j.icarus.2004.05.018

Jednostka organizacyjna:
IGF, ZFL

In this work we consider when and how much liquid water during present climate is possible within the gullies observed on the surface of Mars. These features are usually found on poleward directed slopes. We analyse the conditions for melting of H2O ice, which seasonally condenses within the gullies. We follow full annual cycle of condensation and sublimation of atmospheric CO2 and H2O, accounting for the heat and mass transport in the soil. During the summer, once the facets of the gullies are exposed to the Sun the water ice can melt and evaporate. Two mid latitude locations in both hemispheres are considered. The model includes both the rough geometry of the gullies as well as the slope of the surface where the gullies appear. It is an extension of the model developed to calculate condensation of CO2 ice in troughs of different sizes, including polygonal features on Mars (Kossacki and Markiewicz, 2002, Icarus 160, 73; Kossacki et al., 2003, Planet. Space Sci. 51, 569). We have found, that water ice accumulated during winter can undergo transition to the liquid phase after complete sublimation of CO2 ice. The amount of liquid water depends on water content in the atmosphere and on the local wind speed. It is probably not enough to destabilise the slope and cause flow of the surface material. However, even the small amounts of liquid water predicted, can play an important role in surface chemistry, in increasing the cohesive strength of the soil's surface layer and possibly may have some exobiological implications.


Cofnij