Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe

Jensen SL, Thybo H, POLONAISE'97 Working Group


360(1-4), 2002, 187-213, 10.1016/S0040-1951(02)00354-2

The Moho topography is strongly undulating in southern Scandinavia and northeastern Europe. A map of the depth to Moho shows similarities between the areas of the Teisseyre–Tornquist Zone (TTZ) in Poland and the Fennoscandian Border Zone (FBZ), which is partly coinciding with the Sorgenfrei–Tornquist Zone (STZ) in Denmark. The Moho is steeply dipping at these zones from a crustal thickness of approximately 32 km in the young Palaeozoic Platform and basin areas to approximately 45 km in the old Precambrian Platform and Baltic Shield. The Moho reflectivity (PMP waveform) in the POLONAISE'97 refraction/wide-angle seismic data from Poland and Lithuania is variable, ranging from ‘sharp’ to strongly reverberating signals of up to 2 s duration. There is little or no lower crustal wide-angle reflectivity in the thick Precambrian Platform, whereas lower crustal reflectivity in the thin Palaeozoic Platform is strongly reverberating, suggesting that the reflective lower crust and upper mantle is a young phenomena. From stochastic reflectivity modelling, we conclude that alternating high- and low-velocity layers with average thicknesses of 50–300 m and P-wave velocity variations of ±3–4% of the background velocity can explain the lower crustal reflectivity. Sedimentary layering affects the reflectivity of deeper layers significantly and must be considered in reflectivity studies, although the reverberations from the deeper crust cannot be explained by the sedimentary layering only. The reflective lower crust and upper mantle may correspond to a zone that has been intruded by mafic melts from the mantle during crustal extension and volcanism.