IGF



Publikacja

Crustal seismic structure and depth distribution of earthquakes in the Archean Kuusamo region, Fennoscandian Shield

Uski, M., Tiira, T., Grad, M., Yliniemi, J.

Journal of Geodynamics

53, 2012, 61-80, 10.1016/j.jog.2011.08.005

Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.

The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.

The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.

We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.


Cofnij