Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber

Klimczak M., Siwicki B., Skibinski P., Pysz D., Stepien R., Szolno A., Pniewski J., Radzewicz C., and Buczynski R.

Optical and Quantum Electronics

46 (4), 2014, 563–571, 10.1007/s11082-013-9802-1

Supercontinuum from 800 to 2,600 nm has been obtained in a soft glass suspended-core photonic crystal fiber. The fiber has been fabricated using an in-house synthesized, lead-bismuth-galate oxide glass (PBG-08), which has a transmission window from 500 nm to 4,500 nm. Dispersion characteristic has been designed to enable efficient pumping in the anomalous regime, using typical telecommunication wavelengths and influence of discrepancy between design and physical dispersion profile of fiber is discussed. An optical parametric amplifier system seeded with a Ti:Sapphire oscillator has been used as a light source (70 fs pulses with 100 kHz repetition rate). Supercontinuum bandwidth on the mid-infrared side is limited by OH− absorption of the glass and presence of second zero-dispersion wavelength in the spectral area of interest. Flatness the spectrum remains under 7 dB from roughly 1,800 nm to about 2,500 nm.