Cwiczenia VI: Akwizycja danych przez porty i sterowanie urzadzeniami przez: RS232,
LPT, USB, mikrofon, itd. (spektrometr, tracker)

Instrhwinfo — funkcja do informacji o dostepnych narzedziach do komunikacji z urzadzeniami
https://www.mathworks.com/products/instrument/supported/gpib.html

% Create a serial port object.
objl = instrfind('Type', 'serial’, 'Port’, 'COM3', 'Tag', ");
% Create the serial port object if it does not exist
if isempty(obj1)

objl = serial('COM3";
else

fclose(objl);

obj1 = obj1(1)
end
% Connect to instrument object, obj1.
fopen(objl);
% Communicating with instrument object, obj1.
datal = query(objl, *IDN?");
% Disconnect from instrument object, obj1.
fclose(objl);
% Clean up all objects.
delete(objl);

1. Sterowanie portem LPT: Sterowanie oswietleniem, urzadzeniami

port = digitalio('parallel’, 'LPT1";
PortO=addline(port,0:7,'out’); % pins 2-9
putvalue(port.Line(1:8), vect); % put values

% ustawia Low O lub High 1 na odpowiednich pinach.
% 1 oznacza okolo 4.3V

% 0 okolo 0.05 V

setvalue=getvalue(port.Line); % get values on PINS

2. Sterowanie mikrofonem: detektor wytadowan atmosferycznych

ai = analoginput(‘'winsound');
set(ai,'SampleRate',freq)
addchannel(ai,[1,2]);

set(ai,' TriggerDelay',0.5);
data=zeros(nrec,?2);

t=[1:nrec];
set(ai,'SamplesPerTrigger',length(data))
start([ai])
[data,time,abstime,events]=getdata(ai);

3. Sterowanie portem RS232: AE-51, STR22 Sun Tracker, Arduinio
COM_PORT='"COMS3;

COM_PORT="/dev/ttyS0;
s=serialCOM_PORT,' BaudRate',RATE);

https://www.mathworks.com/products/instrument/supported/gpib.html

set(s,'InputBufferSize',1024);

set(s,'OutputBufferSize',1024);

%set(s, Terminator','LF/CR");

set(s, Terminator','CR’);

while (s.BytesAvailable>1)
fscanf(s);

end

4. Sterowanie portem USB: Spektrometr, USB1608FS A/D
5. TCPIP

% Create TCP/IP object 't'. Specify server machine and port number.
t = tepip(‘'www.EXAMPLE_WEBSITE.com', 80);
% Set size of receiving buffer, if needed.
set(t, 'InputBufferSize', 30000);
% Open connection to the server.
fopen(t);
% Transmit data to the server (or a request for data from the server).
fprintf(t, 'GET /);
% Pause for the communication delay, if needed.
pause(1)
% Receive lines of data from server
while (get(t, 'BytesAvailable") > 0)
t.BytesAvailable
DataReceived = fscanf(t)
end
% Disconnect and clean up the server connection.
fclose(t);
delete(t);
clear t

6. Sterowanie portem GPIB

% Create a GPIB object.
objl = instrfind('Type', 'gpib’, '‘BoardIindex’, 7, 'PrimaryAddress', 10, 'Tag’, ");
% Create the GPIB object if it does not exist
% otherwise use the object that was found.
if isempty(objl)
obj1 = gpib('AGILENT', 7, 10);
else
fclose(objl);
objl = obj1(1)
end
% Connect to instrument object, obj1.
fopen(objl);
% Communicating with instrument object, obj1.
datal = query(objl, *IDN?");
% Disconnect from instrument object, obj1.
fclose(objl);
% Clean up all objects.
delete(objl);

7. Sterowanie spektrometrem przy uzyciu zewnetrznych bibliotek Windowsowych (dll)

a) Uruchomienie spektrometru, zatadowanie biblioteki
function StartSpectrometer()
if ~libisloaded('sdacq32mp")
loadlibrary sdacq32mp sdacq32mp.h addheader sdacq32_error_codes.h addheader
sdacq32_types.h
end

libfunctionsview funkcja wyswietla strukture biblioteki (np. sdacg32mp)

% otwieranie urzgdzenia
ret=calllib('sdacg32mp','SDACQMP_OpenOperationElectronicsDevice',1,6,1);
% inicjalizacja
ret=calllib('sdacg32mp','SDACQMP_InitializeOperationElectronics',0,1);

b) Zbieranie danych

function DATA=GetData(dt)

% liczba kanatéw

nchannels=256;

Channel_ID=libpointer('int32Ptr',0);
ret=calllib('sdacq32mp’,'SDACQMP_AllocRawData',Channel_ID);
ret=calllib('sdacg32mp','SDACQMP_ParaSetMapping',Channel_ID,1,1);

if dt<=6500

IntegrationTime=libpointer('doublePtr',dt);
ret=calllib('sdacg32mp’','SDACQMP_ParaSetintegrationTime',IntegrationTime, 1);
else

IntegrationTime=libpointer('int32Ptr',dt);
ret=calllib('sdacg32mp’','SDACQMP_ParaSetintegrationTime2',IntegrationTime,1);
end

% nrec Number of scans to averaging (1..100)

%AverageNumber=libpointer('int32Ptr',nrec);
%ret=calllib('sdacq32mp','SDACQMP_ParaSetAverageNumber',AverageNumber,1);

ret=calllib('sdacg32mp’','SDACQMP_GetSpectra’,1);
spectral_data=libpointer(‘doublePtr',zeros(nchannels,1));
ret=calllib('sdacq32mp’','SDACQMP_GetStoredRawData',Channel_ID,spectral_data);
H=get(spectral_data);

DATA=H.Value;

ret=calllib('sdacq32mp’','SDACQMP_FreeRawData',Channel_ID);

c) Sterowanie kanatami pomiarowymi za pomocg dwdch migawek przy uzyciu LPT

if findstr(str,'sun’)
vect=[10000000];
elseif findstr(str,'sky")

vect=[0100000Q];
elseif findstr(str,'dark")
vect=[00000000J;
else
disp('Wrong shutter option’)
res='ERROR;
return
end

port=digitalio('parallel','LPT1"); % creats digital object
%get(port);

%propinfo(port);

% Add lines for the Data Interface
PortO=addline(port,0:7,'out’); % pins 2-9
putvalue(port.Line(1:8), vect); % put values

% ustawia Low 0O lub High 1 na odpowiednich pinach.

% 1 oznacza ok. 4.3V

% 0 ok. 0.05V

setvalue=getvalue(port.Line); % get values on PINS
x=sum(vect-setvalue);
if x==
res='0OK";
else
res='ERROR’;
end

8. Sterowanie USB1608FS A/D

% wymagania cbw32.dll and cbw.h
% zatadowanie biblioteki
if ~libisloaded('cbw32")
loadlibrary cbw32 cbw.h
end
%libfunctionsview cbw32 % Dostepne funkcje
DevID=0;
% Zakresy przetwornikow A/D
% res=1 OR (-1) range -10 +10
% res=0 range -5 +5
% res=14 OR range -2 +2
% res=4 OR range -1 +1

range=0; % voltage range

scale=10;

channel=0;

range=1;

port=0;

Slev=2;
[a,SWITCH]=calllib(‘'cbw32','cbDBitIn',DevID,1,port,0);
[a,SWITCH]=calllib(‘cbw32','cbDBitIn’,DevID,1,port,0);
val=zeros(nrec,8);

http://www.measurementcomputing.com/pdfs/USB-1608FS.pdf

[a,val(i,j)]=calllib('cbw32','cbAln’',DevID,j-1,range,1);
[a,SWITCH]=calllib('cbw32','cbDBitIn',DevID,1,port,0);
[a,V(i)]=calllib('cbw32','cbAln’',DevID,8-1,range,1);

% %czyta pojedynczy port

port=0; % od0do7
[a,D]=calllib('cbw32','cbDBitIn',DeviID,1,port,0)
%czyta wszystkie 8 portéw na raz
[a,D]=calllib('cbw32','cbDIn’,DevID,1,0)

% Konfiguracja
[a]=calllib('cbw32','cbDConfigPort’,DevID,1,1)
[a]=calllib('cbw32','cbDOut',DevID,1,0)

9. Sterowanie aethalometrem AE-51 (sterowanie przez USB widocznym jak port
szeregowy)

s = instrfind('Type', 'serial’, 'Port’, 'COM3', 'Tag', ");
% Tworzy obiekt portu szeregowego jesli nieistnieje
if isempty(s)
s = serial('COM3");
else
fclose(s);
s=s(1)
end
% ustawienie predkosci transmisji (ewentualnie innych parametréw get(s))
set(s,'BaudRate’',500000)
% Podtaczenie do portu
fopen(s);
%skanowanie portu celem sprawdzenia czy sg dostepne dane
if get(s,' BytesAvailable")
% czytanie danych
str=fscanf(s);
end
% sprawdza czy dtugosci stowa wynosi 41 — jesli taka przetwarza dane
If length(s)==41
fprintf(s, znak) % wysyta cigg znak do portu
end
- Dekodowanie informaciji
x=str-0;
fori=1:6
t(i)=str(20+i-1)-0;
end

al=str(9)-0;

a2=str(10)-0;

a3=str(11)-0;
DATA=(256*256*a3+256*a2+al);

Cwiczenia VIIl - kompilator mcc i mex

- Kompilacja mcc, wymaga toolboxa, ktéry nie jest dostepny na FUW.

- Aby skompilowaé program musimy zapisa¢ go w postaci funkcji

- Przed kompilacjg musimy ustawi¢ rodzaj uzywanego kompilatora mbuild -setup

- opcje kompilatora:

-X generuje MEX file oraz kod w C
-m generuje plik wykonalny
-p generuje plik wykonalny oraz kod w C++

-S generuje symulinka MEX uzywajac C
-B sgl generuje wykonalny plik uzywajac C zawierajacy biblioteki graficzne (wymaga SGL)
-B generuje wykonalny plik uzywajgc C++ zawierajgcy biblioteki graficzne (wymaga SGL)
-B pcode generuje p-code

Aby uruchomié¢ skompilowany program na komputerze gdzie na ma matlaba musimy
zainstalowa¢ odpowiedni do wersji MATLAB Compiler Runtime (MCR)

http://www.mathworks.com/products/compiler/mcr/

Generowanie MEX file
1. FORTRAN

Musimy napisac subrutyne, ktéra bedzie interfejsem pomiedzy kodem napisanym a Fotranie
a matlabem

nlhs | Liczba argumentéw wyjsciowych lub wymiar macierzy.
plhs | Macierz wyj$ciowa.
nrhs | Liczba argumentéw wejsciowych lub wymiar macierzy

prhs | Macierz wej$ciowa.

W pierwszej linii kody wstawiamy nagtéwek fintrf.h, zawierajgcy deklaracje funkcji APl w
MATLABIe

#include "fintrf.h"

Tworzymy subrutyne

http://www.mathworks.com/products/compiler/mcr/

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
implicit none

Musimy zadeklarowa¢ zmiennie uzywajac MATLABowego typu zmiennej mwPointer.

deklaracja argumentéw mexFunction:
mwPointer plhs(*), prhs(*)
integer nlhs, nrhs

deklaracja funkcji

mwPointer mxGetPr

mwPointer mxCreateDoubleMatrix
integer mxIsNumeric

mwPointer mxGetM, mxGetN

deklaracja zmiennych lokalnych (Pointers to input/output mxArrays©
mwPointer x_ptr, y_ptr

deklaracja macierzy

mwPointer mrows, ncols
mwSize size

Weryfikacja argumentéw inputowych i outputowych

Verify the number of MEX-file input and output arguments using the nrhs and nlhs
arguments. Add these statements to the mexfunction code block.

if(nrhs .ne. 1) then
call mexErrMsgldAndTxt (MATLAB:timestwo:nIinput','One input required.")
elseif(nlhs .gt. 1) then
call mexErrMsgldAndTxt ('MATLAB:timestwo:nOutput','Too many output
arguments.")
endif

Weryfikacja typu argumentow wejsciowych.

if(mxilsNumeric(prhs(1)) .eq. 0) then
call mexErrMsgldAndTxt (MATLAB:timestwo:NonNumeric','Input must be a number.")
endif

Wiasciwa subrutyna napisana w fortranie

subroutine timestwo(y_output, X_input)
real*8 x_input, y_output

y_output = 2.0 * x_input

return

end
Deklaracja zzmiennych dla subrutyny FOTRANowsie]

real*8 x_input, y_output

czytanie parametréw wejsciowych
X_ptr = mxGetPr(prhs(1))

odczytanie rozmiaru macierzy wejsciowej

mrows = mxGetM(prhs(1))
ncols = mxGetN(prhs(1))
Size = mrows*ncols

Tworzenie FOTRANowskiej macierz wejsiowej
call mxCopyPtrToReal8(x_ptr,x_input,size)
Przygotowanie danych wyjsciowych

Tworzenie macierzy wyjsiowej
plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

przypisanie danych
y_ptr = mxGetPr(plhs(1))

Wykonanie obliczen
call timestwo(y_output, X_input)

Skopiowanie wynikéw do argumentu wyjsciowego
call mxCopyReal8ToPtr(y_output,y_ptr,size)
View Complete Source File

Kompilacja kodu
mex timestwo.F

wykonanie
timestwo(2)

2. Przykiad napisany w C
#include "mex.h"

/*
* timestwo.c - example found in API guide

*

* Computational function that takes a scalar and double it.

*

* This is a MEX-file for MATLAB.
* Copyright 1984-2000 The MathWorks, Inc.
*/

void timestwo(double y[], double x[])

{
y[0] = 2.0*X[0J;

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs][])

double *x,*y;
int mrows,ncols;

/* Check for proper number of arguments. */
if(nrhs!=1) {

meXxErrMsgTxt("One input required.");
} else if(nlhs>1) {

meXErrMsgTxt("Too many output arguments");

}

/* The input must be a noncomplex scalar double.*/
mrows = mxGetM(prhs[0]);
ncols = mxGetN(prhs[0]);
if('mxIsDouble(prhs[0]) || mxlsComplex(prhs[0]) ||
I(mrows==1 && ncols==1)) {
meXxErrMsgTxt("Input must be a noncomplex scalar double.");

}

[* Create matrix for the return argument. */
plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

/* Assign pointers to each input and output. */
X = mxGetPr(prhs[0]);
y = mxGetPr(plhs[0]);

/* Call the timestwo subroutine. */
timestwo(y,X);

