

Ćwiczenia VI: Akwizycja danych przez porty i sterowanie urządzeniami przez: RS232,

LPT, USB, mikrofon, itd. (spektrometr, tracker)

Instrhwinfo – funkcja do informacji o dostępnych narzędziach do komunikacji z urządzeniami
https://www.mathworks.com/products/instrument/supported/gpib.html

% Create a serial port object.
obj1 = instrfind('Type', 'serial', 'Port', 'COM3', 'Tag', '');
% Create the serial port object if it does not exist
if isempty(obj1)
 obj1 = serial('COM3');
else
 fclose(obj1);
 obj1 = obj1(1)
end
% Connect to instrument object, obj1.
fopen(obj1);
% Communicating with instrument object, obj1.
data1 = query(obj1, '*IDN?');
% Disconnect from instrument object, obj1.
fclose(obj1);
% Clean up all objects.
delete(obj1);

1. Sterowanie portem LPT: Sterowanie oświetleniem, urządzeniami

port = digitalio('parallel', 'LPT1');
Port0=addline(port,0:7,'out'); % pins 2-9
putvalue(port.Line(1:8), vect); % put values
% ustawia Low 0 lub High 1 na odpowiednich pinach.
% 1 oznacza okolo 4.3 V
% 0 okolo 0.05 V
setvalue=getvalue(port.Line); % get values on PINS

2. Sterowanie mikrofonem: detektor wyładowań atmosferycznych

ai = analoginput('winsound');
set(ai,'SampleRate',freq)
addchannel(ai,[1,2]);
set(ai,'TriggerDelay',0.5);
data=zeros(nrec,2);
t=[1:nrec];
set(ai,'SamplesPerTrigger',length(data))
start([ai])
[data,time,abstime,events]=getdata(ai);

3. Sterowanie portem RS232: AE-51, STR22 Sun Tracker, Arduinio

COM_PORT='COM3';
COM_PORT='/dev/ttyS0';
s=serial(COM_PORT,'BaudRate',RATE);

https://www.mathworks.com/products/instrument/supported/gpib.html

set(s,'InputBufferSize',1024);
set(s,'OutputBufferSize',1024);
%set(s,'Terminator','LF/CR');
set(s,'Terminator','CR');
while (s.BytesAvailable>1)
 fscanf(s);
end

4. Sterowanie portem USB: Spektrometr, USB1608FS A/D

5. TCPIP

% Create TCP/IP object 't'. Specify server machine and port number.
t = tcpip('www.EXAMPLE_WEBSITE.com', 80);
% Set size of receiving buffer, if needed.
set(t, 'InputBufferSize', 30000);
% Open connection to the server.
fopen(t);
% Transmit data to the server (or a request for data from the server).
fprintf(t, 'GET /');

% Pause for the communication delay, if needed.
pause(1)
% Receive lines of data from server
while (get(t, 'BytesAvailable') > 0)
 t.BytesAvailable
 DataReceived = fscanf(t)
end

% Disconnect and clean up the server connection.
fclose(t);
delete(t);
clear t

6. Sterowanie portem GPIB

% Create a GPIB object.
obj1 = instrfind('Type', 'gpib', 'BoardIndex', 7, 'PrimaryAddress', 10, 'Tag', '');
% Create the GPIB object if it does not exist
% otherwise use the object that was found.
if isempty(obj1)

obj1 = gpib('AGILENT', 7, 10);
else

 fclose(obj1);
 obj1 = obj1(1)
end

% Connect to instrument object, obj1.
fopen(obj1);
% Communicating with instrument object, obj1.
data1 = query(obj1, '*IDN?');
% Disconnect from instrument object, obj1.
fclose(obj1);
% Clean up all objects.
delete(obj1);

7. Sterowanie spektrometrem przy użyciu zewnętrznych bibliotek Windowsowych (dll)

a) Uruchomienie spektrometru, załadowanie biblioteki

function StartSpectrometer()

if ~libisloaded('sdacq32mp')

 loadlibrary sdacq32mp sdacq32mp.h addheader sdacq32_error_codes.h addheader

sdacq32_types.h

end

libfunctionsview funkcja wyświetla strukturę biblioteki (np. sdacq32mp)

% otwieranie urządzenia

ret=calllib('sdacq32mp','SDACQMP_OpenOperationElectronicsDevice',1,6,1);

% inicjalizacja

ret=calllib('sdacq32mp','SDACQMP_InitializeOperationElectronics',0,1);

b) Zbieranie danych

function DATA=GetData(dt)

% liczba kanałów

nchannels=256;

Channel_ID=libpointer('int32Ptr',0);

ret=calllib('sdacq32mp','SDACQMP_AllocRawData',Channel_ID);

ret=calllib('sdacq32mp','SDACQMP_ParaSetMapping',Channel_ID,1,1);

if dt<=6500

 IntegrationTime=libpointer('doublePtr',dt);

 ret=calllib('sdacq32mp','SDACQMP_ParaSetIntegrationTime',IntegrationTime,1);

else

 IntegrationTime=libpointer('int32Ptr',dt);

 ret=calllib('sdacq32mp','SDACQMP_ParaSetIntegrationTime2',IntegrationTime,1);

end

% nrec Number of scans to averaging (1..100)

%AverageNumber=libpointer('int32Ptr',nrec);

%ret=calllib('sdacq32mp','SDACQMP_ParaSetAverageNumber',AverageNumber,1);

ret=calllib('sdacq32mp','SDACQMP_GetSpectra',1);

spectral_data=libpointer('doublePtr',zeros(nchannels,1));

ret=calllib('sdacq32mp','SDACQMP_GetStoredRawData',Channel_ID,spectral_data);

H=get(spectral_data);

DATA=H.Value;

ret=calllib('sdacq32mp','SDACQMP_FreeRawData',Channel_ID);

c) Sterowanie kanałami pomiarowymi za pomocą dwóch migawek przy użyciu LPT

if findstr(str,'sun')

 vect=[1 0 0 0 0 0 0 0];

 elseif findstr(str,'sky')

 vect=[0 1 0 0 0 0 0 0];

 elseif findstr(str,'dark')

 vect=[0 0 0 0 0 0 0 0];

 else

 disp('Wrong shutter option')

 res='ERROR';

 return

end

port=digitalio('parallel','LPT1'); % creats digital object

%get(port);

%propinfo(port);

% Add lines for the Data Interface

Port0=addline(port,0:7,'out'); % pins 2-9

putvalue(port.Line(1:8), vect); % put values

% ustawia Low 0 lub High 1 na odpowiednich pinach.

% 1 oznacza ok. 4.3 V

% 0 ok. 0.05 V

setvalue=getvalue(port.Line); % get values on PINS

x=sum(vect-setvalue);

if x==0

 res='OK';

else

 res='ERROR';

end

8. Sterowanie USB1608FS A/D

% wymagania cbw32.dll and cbw.h
% załadowanie biblioteki
if ~libisloaded('cbw32')
 loadlibrary cbw32 cbw.h
end
%libfunctionsview cbw32 % Dostępne funkcje
DevID=0;
% Zakresy przetworników A/D
% res=1 OR (-1) range -10 +10
% res=0 range -5 +5
% res=14 OR range -2 +2
% res=4 OR range -1 +1

range=0; % voltage range
scale=10;
channel=0;
range=1;
port=0;
Slev=2;

[a,SWITCH]=calllib('cbw32','cbDBitIn',DevID,1,port,0);
 [a,SWITCH]=calllib('cbw32','cbDBitIn',DevID,1,port,0);
val=zeros(nrec,8);

http://www.measurementcomputing.com/pdfs/USB-1608FS.pdf

 [a,val(i,j)]=calllib('cbw32','cbAIn',DevID,j-1,range,1);
[a,SWITCH]=calllib('cbw32','cbDBitIn',DevID,1,port,0);
[a,V(i)]=calllib('cbw32','cbAIn',DevID,8-1,range,1);
% %czyta pojedynczy port
port=0; % od 0 do 7
[a,D]=calllib('cbw32','cbDBitIn',DevID,1,port,0)
%czyta wszystkie 8 portów na raz
[a,D]=calllib('cbw32','cbDIn',DevID,1,0)
% Konfiguracja
[a]=calllib('cbw32','cbDConfigPort',DevID,1,1)
[a]=calllib('cbw32','cbDOut',DevID,1,0)

9. Sterowanie aethalometrem AE-51 (sterowanie przez USB widocznym jak port

szeregowy)

s = instrfind('Type', 'serial', 'Port', 'COM3', 'Tag', '');
% Tworzy obiekt portu szeregowego jeśli nieistnieje
if isempty(s)
 s = serial('COM3');

else
 fclose(s);

 s = s(1)
end
% ustawienie prędkości transmisji (ewentualnie innych parametrów get(s))
set(s,'BaudRate',500000)
% Podłączenie do portu
fopen(s);
%skanowanie portu celem sprawdzenia czy są dostępne dane

if get(s,'BytesAvailable')

 % czytanie danych

str=fscanf(s);

end

% sprawdza czy długości słowa wynosi 41 – jeśli taka przetwarza dane

If length(s)==41

fprintf(s, znak) % wysyła ciąg znak do portu

end

- Dekodowanie informacji

x=str-0;

for i=1:6

 t(i)=str(20+i-1)-0;

end

 a1=str(9)-0;

 a2=str(10)-0;

 a3=str(11)-0;

 DATA=(256*256*a3+256*a2+a1);

Ćwiczenia VIII – kompilator mcc i mex

- Kompilacja mcc, wymaga toolboxa, który nie jest dostępny na FUW.

- Aby skompilować program musimy zapisać go w postaci funkcji

- Przed kompilacją musimy ustawić rodzaj używanego kompilatora mbuild -setup

- opcje kompilatora:

-x generuje MEX file oraz kod w C

 -m generuje plik wykonalny

 -p generuje plik wykonalny oraz kod w C++

 -S generuje symulinka MEX używając C

 -B sgl generuje wykonalny plik używając C zawierający biblioteki graficzne (wymaga SGL)

 -B generuje wykonalny plik używając C++ zawierający biblioteki graficzne (wymaga SGL)

 -B pcode generuje p-code

Aby uruchomić skompilowany program na komputerze gdzie na ma matlaba musimy

zainstalować odpowiedni do wersji MATLAB Compiler Runtime (MCR)

http://www.mathworks.com/products/compiler/mcr/

Generowanie MEX file

1. FORTRAN

Musimy napisac subrutyne, która będzie interfejsem pomiędzy kodem napisanym a Fotranie

a matlabem

nlhs Liczba argumentów wyjściowych lub wymiar macierzy.

plhs Macierz wyjściowa.

nrhs Liczba argumentów wejściowych lub wymiar macierzy

prhs Macierz wejściowa.

W pierwszej linii kody wstawiamy nagłówek fintrf.h, zawierający deklaracje funkcji API w
MATLABie

#include "fintrf.h"

Tworzymy subrutyne

http://www.mathworks.com/products/compiler/mcr/

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
implicit none

Musimy zadeklarować zmiennie używając MATLABowego typu zmiennej mwPointer.

deklaracja argumentów mexFunction:
 mwPointer plhs(*), prhs(*)
 integer nlhs, nrhs

deklaracja funkcji

mwPointer mxGetPr
mwPointer mxCreateDoubleMatrix
integer mxIsNumeric
mwPointer mxGetM, mxGetN

deklaracja zmiennych lokalnych (Pointers to input/output mxArrays
mwPointer x_ptr, y_ptr

deklaracja macierzy

mwPointer mrows, ncols
mwSize size

Weryfikacja argumentów inputowych i outputowych

Verify the number of MEX-file input and output arguments using the nrhs and nlhs
arguments. Add these statements to the mexfunction code block.

if(nrhs .ne. 1) then
 call mexErrMsgIdAndTxt ('MATLAB:timestwo:nInput','One input required.')
 elseif(nlhs .gt. 1) then
 call mexErrMsgIdAndTxt ('MATLAB:timestwo:nOutput','Too many output
arguments.')
 endif

Weryfikacja typu argumentów wejściowych.

if(mxIsNumeric(prhs(1)) .eq. 0) then
 call mexErrMsgIdAndTxt ('MATLAB:timestwo:NonNumeric','Input must be a number.')
endif

Właściwa subrutyna napisana w fortranie

subroutine timestwo(y_output, x_input)
real*8 x_input, y_output
y_output = 2.0 * x_input
return
end
Deklaracja zzmiennych dla subrutyny FOTRANowsiej

real*8 x_input, y_output

czytanie parametrów wejściowych

x_ptr = mxGetPr(prhs(1))

odczytanie rozmiaru macierzy wejściowej

mrows = mxGetM(prhs(1))
ncols = mxGetN(prhs(1))
size = mrows*ncols

Tworzenie FOTRANowskiej macierz wejsiowej
call mxCopyPtrToReal8(x_ptr,x_input,size)
Przygotowanie danych wyjściowych

Tworzenie macierzy wyjsiowej
plhs(1) = mxCreateDoubleMatrix(mrows,ncols,0)

przypisanie danych
 y_ptr = mxGetPr(plhs(1))

Wykonanie obliczeń
 call timestwo(y_output, x_input)

Skopiowanie wyników do argumentu wyjściowego
 call mxCopyReal8ToPtr(y_output,y_ptr,size)
View Complete Source File

Kompilacja kodu
mex timestwo.F

wykonanie
timestwo(2)

2. Przykład napisany w C
#include "mex.h"

/*
 * timestwo.c - example found in API guide
 *
 * Computational function that takes a scalar and double it.
 *
 * This is a MEX-file for MATLAB.
 * Copyright 1984-2000 The MathWorks, Inc.
 */

void timestwo(double y[], double x[])
{
 y[0] = 2.0*x[0];
}

void mexFunction(int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])
{
 double *x,*y;
 int mrows,ncols;

 /* Check for proper number of arguments. */
 if(nrhs!=1) {
 mexErrMsgTxt("One input required.");
 } else if(nlhs>1) {
 mexErrMsgTxt("Too many output arguments");
 }

 /* The input must be a noncomplex scalar double.*/
 mrows = mxGetM(prhs[0]);
 ncols = mxGetN(prhs[0]);
 if(!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||
 !(mrows==1 && ncols==1)) {
 mexErrMsgTxt("Input must be a noncomplex scalar double.");
 }

 /* Create matrix for the return argument. */
 plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

 /* Assign pointers to each input and output. */
 x = mxGetPr(prhs[0]);
 y = mxGetPr(plhs[0]);

 /* Call the timestwo subroutine. */
 timestwo(y,x);
}

