

KURS

MATLAB I

Rok 2024/2025, semestr letni

Uniwersytet Warszawski

Wydział Fizyki

Krzysztof Markowicz,

Na podstawie i modyfikacji skryptu autorstwa

Ryszarda Buczyńskiego i Rafała Kasztelanica

 2

Spis Treści

Wstęp ... 3

Opis środowiska Matlab .. 4

Operacje algebraiczne na wektorach i macierzach .. 9

Wizualizacja danych – Wykresy dwuwymiarowe .. 13

Wizualizacja danych – Wykresy trójwymiarowe .. 16

Podstawy programowania: skrypty i funkcje .. 19

Instrukcje w Matlabie .. 22

Inne przydatne funkcje .. 24

Rozwiązywanie równań nieliniowych .. 27

Rozwiązywanie układów równań liniowych ... 28

Interpolacja i aproksymacja funkcji .. 30

Podstawy statystyki w Matlabie .. 31

 3

KURS MATLAB I

Rok 2024/2025 semestr letni, wymiar 30h

Prowadzący:
Prof. dr hab. Krzysztof Markowicz, kmark@igf.fuw.edu.pl,

www.igf.fuw.edu.pl/~kmark/stacja/wyklady/MATLAB

Zakład Fizyki Atmosfery, Instytut Geofizyki, Wydz. Fizyki UW, Pasteura 5, pok. B4.47

Zajęcia odbywają się w budynku przy ul. Pasteura 5 w sali 1.30/1.29 lub zdalnie:

Oprogramowanie:
Matlab, The MathWorks, Inc.; wersja 2019 lub nowsza; platforma UNIX/LINUX.

Charakterystyka kursu:
Poziom podstawowy, wymagana znajomość podstawowych pojęć matematycznych z zakresu algebry, analizy

matematycznej i prawdopodobieństwa, znajomość programowania nie jest konieczna, ale mile widziana.

Forma zaliczenia:
Do zaliczenia Kursu na ocenę dostateczną wymagane jest zaliczenie wszystkich ćwiczeń-laboratoriów. Ocena

końcowa wystawiana jest przez prowadzącego na podstawie osiągniętej sprawności i postępów w posługiwaniu

się środowiskiem obliczeniowym MATLAB, kreatywności studenta oraz kolokwium na ostatnich zajęciach.

Obowiązkowe jest uzyskanie certyfikatu z kursu Matlaba online:

https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted

Obecność na wszystkich zajęciach jest obowiązkowa, dopuszczana jest jedna nieobecność, przy większej ilości

wymagane jest zwolnienie lekarskie. Nieobecność nie zwalnia studenta z zaliczenia poszczególnych zadań.

Spis omawianej problematyki:
1. Opis środowiska Matlaba

2. Operacje algebraiczne na wektorach i macierzach

3. Wizualizacja danych – Wykresy dwuwymiarowe

4. Wizualizacja danych – Wykresy trójwymiarowe

5. Podstawy programowania: skrypty i funkcje

6. Instrukcje w Matlabie

7. Inne przydatne funkcje

8. Rozwiązywanie równań nieliniowych

9. Rozwiązywanie układów równań liniowych

10. Interpolacja i aproksymacja funkcji

11. Podstawy statystyki w Matlabie

Literatura:
1. Matlab: Intro, Demo, manual online.

2. A. Zalewski R. Cegieła, Matlab – Obliczenia numeryczne i ich zastosowania, Wyd. Nakom,

Poznań 1996.

3. B. Mrożek, Z. Mrożek, Matlab uniwersalne środowisko do obliczeń naukowo-technicznych, Wyd.

PLJ, Warszawa 1996

4. B. Mrozek, Z. Mrozek, Matlab 6 – poradnik użytkownika

5. Waldemar Sradomski, MATLAB. Praktyczny podręcznik modelowania, Helion, Gliwice, 2015

6. Pratap Rudra, MATLAB 7 dla naukowców i inżynierów, 2010

7. Pełna dokumentacja, forum dyskusyjne, i wiele innych rzeczy www.mathworks.com

mailto:kmark@igf.fuw.edu.pl
http://www.igf.fuw.edu.pl/~kmark/stacja/wyklady/MATLAB
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
http://www.mathworks.com/

 4

TEMATY

OPIS ŚRODOWISKA MATLABA

Temat 1
Matlab: rys historyczny, przeznaczenie oprogramowania i opis pakietu

MATLAB – program komputerowy będący interaktywnym środowiskiem do wykonywania

obliczeń naukowych i inżynierskich oraz do tworzenia symulacji komputerowych.

Nazwa programu pochodzi od angielskich słów MATrix LABoratory, gdyż początkowo

program ten był przeznaczony do numerycznych obliczeń macierzowych. Obecnie program

ten potrafi znacznie więcej, cechuje go duża liczba funkcji bibliotecznych oraz duże

możliwości rozbudowy przez użytkownika za pomocą pisania własnych funkcji. Posiada on

swój język programowania, co umożliwia pisanie w pełni funkcjonalnych programów

działających w środowisku Matlaba.

W zakresie grafiki MATLAB umożliwia rysowanie dwu i trójwymiarowych wykresów

funkcji oraz wizualizację wyników obliczeń w postaci rysunków statycznych i animacji.

Możliwe jest pobieranie danych pomiarowych i sterowanie urządzeniami zewnętrznymi przez

porty w celu. Istnieją alternatywne odpowiedniki tegoż programu rozprowadzane na

licencjach FLOSS, takie jak Scilab czy Octave, jednak nie są tak rozbudowane jak MATLAB

http://www.ont.com.pl/produkty/lista-produktow/matlab/

Prapoczątki programu MATLAB sięgają lat siedemdziesiątych, gdy w USA na zlecenie

National Science Foundation powstały biblioteki języka Fortran do obliczeń macierzowych:

Linpack i Eispack. Jeden z autorów tych bibliotek, Cleve Moler prowadził zajęcia z algebry

http://www.ont.com.pl/produkty/lista-produktow/matlab/

 5

liniowej na Uniwersytecie stanu Nowy Meksyk. Chcąc ułatwić życie swoim studentom

napisał on w 1980 r. program, który umożliwiał korzystanie z tych bibliotek bez potrzeby

programowania w Fortranie. Program ten napisany (także w Fortranie) w formie prostego

interaktywnego języka poleceń i rozprowadzany na zasadach public domain był

pierwowzorem programu MATLAB. W 1983 C. Moler oraz S. Bangert i J. Little (inżynier z

Uniwersytetu Stanford) postanowili rozwinąć powyższy projekt – zastąpili Fortran językiem

C i dodali zintegrowaną grafikę. Założyli oni firmę The MathWorks Inc., która do dziś

zajmuje się rozwojem i sprzedażą pakietu Matlab. W 1985 roku pojawiła się pierwsza wersja

programu (wikipedia).

 Najważniejsze rodzaje plików

 M-pliki (*.m)

W celu zautomatyzowania pewną liczbę poleceń z wiersza poleceń możemy zapisać do pliku

z rozszerzeniem *.m (stąd nazwa m-plik) i tę listę poleceń uruchomić jednym poleceniem –

mówimy wówczas o m-pliku skryptowym.

 Mex-pliki

Program napisany w języku C lub Fortran możemy skompilować poleceniem mex. Wynikiem

kompilacji jest otrzymanie pliku dynamicznie ładowanej biblioteki współdzielonej (w

Microsoft Windows są to pliki *.dll nazywanego mex-plikiem) (skrót od Matlab EXecutable).

Mex-plik można uruchomić z wiersza poleceń w oknie programu MATLAB tak jak zwykły

m-plik.

 Mat-pliki (*.mat)

Tymczasowe lub końcowe wyniki obliczeń możemy zapisywać do pliku tekstowego ASCII o

dowolnej nazwie lub do pliku binarnego z rozszerzeniem *.mat – wówczas wszystkie liczby

(całkowite i zmiennoprzecinkowe) zapisywane są w formacie zmiennoprzecinkowym z

podwójną precyzją.

 Pliki fig (*.fig)

Wykresy i inne formy graficzne wygenerowane w programie MATLAB można zapisać do

wybranego formatu graficznego lub do pliku binarnego z rozszerzeniem *.fig. Zaletą tej

drugiej formy zapisu jest możliwość późniejszej modyfikacji zapisanego obiektu w

programie. Zapisu do formatu fig możemy dokonać za pomocą wybrania odpowiedniej opcji

z menu (save as) lub za pomocą polecenia saveas. Wczytania pliku *.fig do programu

MATLAB dokonuje się poleceniem open lub openfig.

Pliki Live script (*.mlx)

Live Scripty w MATLAB-ie to interaktywne skrypty, które umożliwiają łączenie kodu,

wyników obliczeń, wykresów oraz formatowanego tekstu w jednym dokumencie. Dzięki

temu można łatwo tworzyć dynamiczne raporty, dokumentacje oraz przejrzyste analizy

danych. Są szczególnie przydatne w nauczaniu, eksploracji danych i współpracy, ponieważ

pozwalają na natychmiastową wizualizację wyników oraz użycie elementów interaktywnych,

takich jak suwaki czy pola wejściowe.

Pliki aplikacji (*.mlapp) App Designer

Pliki aplikacji MATLAB App Designer to specjalny format przechowujący interfejsy

graficzne (GUI) stworzone w środowisku MATLAB. Zawierają zarówno kod źródłowy

 6

aplikacji, jak i układ wizualny z elementami interaktywnymi, takimi jak przyciski, pola

tekstowe czy wykresy. Dzięki temu umożliwiają tworzenie intuicyjnych narzędzi do analizy

danych, symulacji czy wizualizacji wyników bez potrzeby pisania kodu obsługującego GUI

od podstaw.

Język programowania pakietu MATLAB jest pełnoprawnym językiem programowania

wysokiego poziomu, o składni wzorowanej na języku C. Pozwala on na używanie funkcji i

struktur, oraz umożliwia pisanie programów zorientowanych obiektowo. Tak jak wszystkie

współczesne języki programowania wysokiego poziomu posiada on instrukcje sterujące takie

jak: if, for, while, switch. Rezygnacja z trójargumentowej pętli for na rzecz tzw. notacji

dwukropkowej skraca kod źródłowy, a więc i czas pisania.

 Toolbox'y (z ang. toolboxes) to zbiór dodatkowych bibliotek (m-plików) do rozwiązywania

specjalistycznych problemów z określonych dziedzin (automatyka, elektronika,

telekomunikacja, matematyka etc.). Biblioteki te rozszerzają możliwości programu

MATLAB.

Wybrane toolbox’y

- Fuzzy Logic Toolbox – środowisko do projektowania i diagnostyki inteligentnych układów

sterowania wykorzystujących metody logiki rozmytej i uczenie adaptacyjne.

- Image Processing Toolbox – programowe narzędzia do przetwarzania obrazów.

- Mapping Toolbox – przeznaczony do analizy informacji geograficznych i wyświetlania

map, z możliwością dostępu do zewnętrznych źródeł geograficznych.

- Neural Network Toolbox – zbiór funkcji do projektowania i symulacji sieci neuronowych.

- Symbolic Math Toolbox – zestaw funkcji do obliczeń symbolicznych – rozszerza

możliwości programu MATLAB o możliwość wykonywania obliczeń symbolicznych.

- Partial Differential Equation Toolbox – zestaw funkcji do numerycznego rozwiązywania

równań różniczkowych cząstkowych metodą elementów skończonych.

- Simulink– pakiet służący do modelowania, symulacji i analizy układów dynamicznych.

Simulink dostarcza także graficzny interfejs użytkownika umożliwiający konstruowanie

modeli w postaci diagramów blokowych.

- Spline Toolbox – zestaw bibliotek do aproksymacji i interpolacji funkcjami sklejanymi.

- Wavelet Toolbox – biblioteka do analizy falowej sygnałów.

- Optimization Toolbox – zestaw funkcji służących do wyznaczania minimum czy maksimum

obiektów z uwzględnieniem szeregu warunków

- Instrument Control Toolbox – zestaw bibliotek do komunikacji z urządzeniami

zewnętrznymi

 7

 - Parallel Computing Toolbox- umożliwia wykonywanie obliczeń równoległych na

procesorach wielordzeniowych lub kastrach komputerowych.

MatLAB online

To wersja MatLAB’a, która może być używana z poziomu przeglądarki po wcześniejszym

zarejestrowaniu na stronie https://www.mathworks.com. Dostęp do tej wersji matlaba:

https://matlab.mathworks.com/

Każdy użytkownik ma dostępną przestrzeń dyskową na tzw. Matlab drive, w której może

przechowywać dane oraz skrypty. Bezpłatny czas pracy w środowisku MATLAB wynosi 30h

na miesiąc.

Kursy interaktywne

Mathworks poprzez produkt MatLAB Onramp oferuje szereg interaktywnych kursów

obejmujących podstawy MatLAB’a oraz wybrane zagadnienia zaawansowane.

https://matlabacademy.mathworks.com/

Temat 2
Operowanie Matlabem w środowisku Linux i Windows

Okna: workspace, directory, history, array editor, …

Temat 3
Różnice między wersjami Matlaba – funkcja ver

>> ver % podaje numer wersji Matlaba oraz numery zainstalowanych dodatków

Temat 4
Zapoznanie się z narzędziami wprowadzającymi Matlaba – funkcje demo, peaks, bench

>> demo % wyświetla dostępne przykłady

>> peaks % przykładowa funkcja 2 zmiennych

>> bench % sprawdzenie szybkości pracy Matlaba – benchmark

Temat 5
Poszukiwanie znaczeń funkcji i skryptów – funkcja help

>> help % wypisuje linki do wszystkich plików pomocy

>> help plot % wypisuje pomoc dotyczącą funkcji plot

Temat 6
Szukanie za pomocą słów kluczowy: lookfor

>> lookfor bessel % przeszukuje pliki pomocy szukając słowa kluczowego bessel

https://www.mathworks.com/
https://matlab.mathworks.com/

 8

Temat 7
Znaczenie średnika na końcu polecenia

Średnik kończący komendę w Matlabie powoduje, że wynik działania danej komendy nie

będzie wyświetlany na ekranie.

Temat 8
Symbole operatorów

= Przypisanie wartości

[] Tworzenie macierzy, list argumentów wyjściowych funkcji

() Listy argumentów wejściowych funkcji, kolejność działań matematycznych

. Kropka dziesiętna, część operatorów arytmetycznych

.. Katalog macierzysty

... Kontynuacja polecenia jest w następnej linii

, . Symbole separacji argumentów funkcji, indeksów, itp.

; Koniec wiersza macierzy, koniec polecenia bez wypisywania odpowiedzi

% Początek linii komentarza

: Generowanie wektorów, indeksowanie macierzy

‘ Początek i koniec wprowadzania łańcuchów znakowych, transpozycja

macierzy, sprzężenie macierzy

!

unix

doc

system

Komenda sytemu operacyjnego

Komendy systemu operacyjnego

ispc zwraca 1 jest system operacyjny to Windowsy

isunix zwraca 1 jest system operacyjny to UNIX

Temat 9
Zmienne specjalne i stałe

ans Zmienna robocza, automatycznie przyjmuje daną wartość, jeśli

nie nadano jej nazwy

computer Nazwa komputera, na którym działa Matlab

eps Precyzja zmiennoprzecinkowa

flops Licznik operacji zmiennoprzecinkowej

i, j Jednostka liczby urojonej

inf Nieskończoność

NaN Wartość nieokreślona (zwykle oznacza wprowadzenie wartości

nieliczbowej jako argumentu funkcji matematycznej)

nargin Liczba argumentów wejściowych funkcji

nargout Liczba argumentów wyjściowych funkcji

pi 3.1415926....

realmax Największa dostępna liczba rzeczywista

realmin Najmniejsza dostępna liczba rzeczywista

Temat 10
Podstawowe funkcje matematyczne

abs Wartość bezwzględna, moduł liczby zespolonej, wektor

wartości znaków łańcucha

acos, acosh Arcus cosinus, arcus cosinus hiperboliczny

acot, acoth Arcus cotangens,

acsc, acsch Arcus cosecans,

angle Kąt fazowy dla liczby zaspolonej w radzianach

asec, asech Arcus secans,

 9

asin, asinh Arcus sinus,

atan, atanh Arcus tangens,

atan2 Arcus tangens, wynik w przedziale [-π, π]

ceil Zaokrąglenie w górę, sufit

conj Liczba sprzężona do liczby

cos, cosh Cosinus,

cot, coth Cotangens,

csc, csch Cosecans,

exp e do potęgi argumentu

fix Zaokrąglenie w kierunku zera

floor Zaokrąglenie w dół, podłoga

gcd Największy wspólny podzielnik

imag Część urojona liczby zespolonej

lcm Najmniejsza wspólna wielokrotność

log Logarytm naturalny argumentu

log10 Logarytm dziesiętny argumentu

real Część rzeczywista liczby zespolonej

rem Reszta z dzielenia

round Zaokrąglenie do najbliższej liczby całkowitej

sec, sech Secans,

sign Znak funkcji

sin, sinh Sinus,

sqrt Pierwiastek kwadratowy

tan, tanh Tangens,

Przykład:

>> abs(5+3i) % wyświetla wartość bezwzględną liczby zespolonej
>> complex(a,b) % definicja liczby zespolonej o części rzeczywistej a i urojonej b

Temat 11
Wprowadzanie zmiennych różnych typów

>> a=´łańcuch wprowadzany´; % zmienna łańcuchowa
>> z=3+2i; zmienna zespolona (część urojoną oznaczamy literą i lub j

Temat 12
Wprowadzanie precyzji wyświetlanych wyników – funkcja format

Do ustalenia precyzji wyświetlania wyników służy funkcja FORMAT.

UWAGA: Wszystkie obliczenia w MATLABie wykonywane są w podwójnej precyzji.

Polecenie Wartość Opis

Format short 3.1416 5 cyfr, reprezentacja stałoprzecinkowa

Format long 3.14159265358979 15 cyfr, reprezentacja stałoprzecinkowa

Format shortE 3.1416e+000 5 cyfr, reprezentacja zmiennoprzecinkowa

Format longE 3.141592653589793e+000 15 cyfr, reprezentacja zmiennoprzecinkowa

Format shortG 3.1416 5 cyfr, reprezentacja stało- lub zmiennoprzecinkowa

Format longG 3.14159265358979 15 cyfr, reprezentacja stało- lub zmiennoprzecinkowa

Format hex 400921fb54442d18 Liczba w układzie szesnastkowym

Format bank 3.14 2 liczby dziesiętne, np. złoty i grosze

Format rat 355/113 Przybliżona wartość liczby w postaci ułamka

Format + + Informacja o znaku liczby

Temat 13

 10

Informacja i usuwanie zmiennych z przestrzeni roboczej – funkcje who, whos, clear

>> who % informacja o dostępnych zmiennych, same nazwy
>> whos % pełna informacja o dostępnych zmiennych
>> clear a % usunięcie z przestrzeni roboczej zmiennej a
>> clear all % usunięcie wszystkich zmiennych

Temat 14
Zmienne losowe w Matlabie

>> rand % rozkład równomierny w przedziale (0,1)
>> randn % rozkład normalny o odchyleniu standardowym 1 i wariancji 1

Po każdym uruchomieniu Matlaba funkcja rand startuje od tych samych wartości. Aby zacząć

od innej wartości należy wywołać funkcję rand w następujący sposób:

>> rand('state',sum(100*clock)) % wartość początkowa na podstawie wskazań zegara

Temat 15
Informacje o operatorach – help ops

* mnożenie macierzy

/ dzielenie macierzy (lewej przez prawą)

\ dzielenie macierzy (prawej przez lewą)

^ podnoszenie do potęgi

‘ sprzężenie macierzy

.* mnożenie tablicowe

./ dzielenie tablicowe (lewej przez prawą)

.\ dzielenie tablicowe (prawej przez lewą)

.’ transpozycja macierzy

.^ tablicowe podnoszenie do potęgi

Temat 16
Operatory relacji

== Relacja równości

~= Relacja nierówności

< Relacja mniejszości

> Relacja większości

<= Relacja mniejsze-równe

>= Relacja większe-równe

Temat 17
Operatory logiczne

& (and) Logiczne i

| (or) Logiczne lub

~ (not) Logiczne nie

Xor Operacja exclusive or

any Operacja logiczna - jeśli jakiś

all Operacj alogiczna - wszystkie

Temat 18
Długie linie

 11

>> x=1 + 1/2 + 1/3 + 1/4 + 1/5 + …
 1/6 + 1/7 + 1/8 + 1/9 + 1/ 10;

Temat 19
Kilka instrukcji w jednej linii

Poszczególne instrukcje oddzielamy przecinkiem.

Przykład:

>> x=2;, y=4;

Temat 20
Czyszczenie okna komend – funkcja clc

Temat 21
Wyprowadzanie na ekran tekstów – funkcja disp

>> disp('WYNIK: '), disp(2+2) % wyświetli WYNIK: 4

Dla znających składnię języka C wygodna może być w użyciu funkcja fprintf()

Temat 22
Wprowadzanie danych – funkcja input

Jeśli chcemy, aby użytkownik wprowadził jakąś zmienną stosujemy funkcję input

Przykład:

>> x = input('Podaj wartość: ')

Podaj wartość: 4
x = 4

Temat 23
Zapisywanie i wczytywanie zmiennych z pliku – funkcje save, load

Dokładny opis funkcji – help save, help load.

Wybrane polecenia:

>> save NazwaPliku x % zapisuje zmienną x w pliku NazwaPliku.mat
>> save NazwaPliku x -ascii % zapisuje zmienną x w pliku tekstowym NazwaPliku.mat
>> save NazwaPliku % zapisuje wszystkie zmienne w pliku NazwaPliku.mat
>> load NazwaPliku % wczytuje wszystkie zmienne z pliku NazwaPliku.mat

 12

OPERACJE ALGEBRAICZNE NA

WEKTORACH I MACIERZACH

Temat 24
Generacja macierzy za pomocą funkcji specjalnych Matlaba

eye Macierz jednostkowa – z jedynkami na przekątnej

linspace Wektor o wartościach rozłożonych równolegle

logspace Wektor o wartościach rozłożonych logarytmicznie

meshgrid Macierz dla wykresów 3D

ones Macierz jedynek

rand Macierz losowa o rozkładzie równomiernym

randn Macierz losowa o rozkładzie normalnym

zeros Macierz zer

compan Macierz stowarzyszona

hadamard Macierz Hadamarda

hankel Macierz Hankela

hilb Macierz Hilberta

invhilb Odwrotna macierz Hilberta

magic Kwadrat magiczny

pascal Macierz Pascala

toeplitz Macierz Toeplitza

vander Macierz Vandermondea

gallery Para małych macierzy testowych

sparse Macierz rzadka

repmat Tworzy macierz jako kopie mniejszej podmacierzy

unique Usuwa z macierzy powtarzające się elementy

Kron Iloczyn Kroneckera

Przykład:

>> x=ones(3); % macierz kwadratowa 3x3 z samymi jedynkami
>> y=zeros(5,2); % macierz zer o 5 wierszach i 2 kolumnach
>> z=rand(1,5); % wektor liczb losowych o 5 elementach

Temat 25
Generacja macierzy przy użyciu dwukropka

Przykład:

>> a=j:k % generuje wektor [j, j+1, ..., k-1, k]
>> a=j:i:k % generuje wektor [j, j+i,j+2i, ...,k]

Temat 26
Wybór elementów macierzy

Przykład:

>> x(:,i) % i-ta kolumna macierzy a
>> y(i,:) % i-ty wiersz macierzy y
>> z(i,a:b) % kolumny macierzy z(a) … z(b)
>> a(:) % całą macierz w postaci wektora kolumnowego
>> b(j:k) % wypisuje elementy macierzy A od elementu j do elementu k

 13

Temat 27
Generacja wektorów, alokacja pamięci

Ze względu na czas wykonywania operacji dobrze jest przed przystąpieniem do obliczeń

stworzyć odpowiednie macierze do przechowywania danych

Przykład:

>> x(5)=0; % wektor 5 elementowy wypełniony zerami
>> y(5,7)=0; % macierz 5x7 wypełniona zerami, lub y=zeros(5,7);

Temat 28
Znaczenie spacji, przecinka i średnika w generacji macierzy

>> x=[1 2 3] % wektor poziomy {1, 2, 3}, równoważne x=[1, 2, 3]
>> y=[1;2;3] % wektor pionowy {1, 2, 3}

Temat 29
Macierze wielowymiarowe

Przykład:

>> x=zeros(i,j,k); % 3-wymiarowa macierz zer o i wierszach, j kolumnach oraz k warstwach

Mając gotowe macierze mogę je składać w macierze o większej liczbie wymiarów. Służy do

tego funkcja cat(dim,a,b,…) gdzie dim określa wzdłuż którego wymiaru dokonywane jest

złożenie macierzy.

Przykład:

>> a=zeros(3); , b=ones(3); % dane początkowe
>> x=cat(1,a,b) % macierz 2-wymiarowa a nad b, równoważne [a; b]
>> y=cat(2,a,b) % macierz 2-wymiarowa b za a, równoważne [a b]
>> z=cat(3,a,b) % macierz 3-wymiarowa o warstwach a i b

Temat 30
Działania macierzowe i tablicowe

Operator Operacja macierzowa Operacja tablicowa

Dodawanie + +

Odejmowanie - -

Mnożenie * .*

Dzielenie lewostronne \ .\

Dzielenie prawostronne / ./

Potęgowanie ^ .^

 14

Temat 31
Operacje na elementach wektora

max(x) zwraca największą wartość w wektorze x. Jeśli x jest macierzą funkcja max(x) zwraca

wektor gdzie kolejne elementy określają największe wartości w każdej z kolumn.

min(x) zwraca wartość minimalną w wektorze x.

sum(x) zwraca sumę wszystkich elementów wektora x.

prod(x) zwraca iloczyn wszystkich elementów wektora x.

diff(x) zwraca różnicę między kolejnymi elementami wektora x. [x(2)-x(1), x(3)-x(2), ...].

Uwaga: Jeśli x jest macierzą powyższe funkcje odnoszą się do poszczególnych kolumn

macierzy x.

Temat 32
Wektoryzacja

Matlab optymalizowany jest do wykonywania działań na wektorach i macierzach. Jeśli to

tylko możliwe należy dążyć do wykonywania obliczeń na wektorach lub macierzach.

Przykład:

% można tak – sposób iteracyjny
>> x=1:10; , y=zeros(10);
>> for i=1:10, y(i)=x(i)^2;, end

% lepiej jednak tak – sposób macierzowy
>> x=1:10;
>> y=x.^2;

Temat 33
Operowanie macierzami

flipdim Wywinięcie macierzy wzdłuż danego wymiaru

fliplr Wywinięcie macierzy w kierunku lewo-prawo

flipud Wywinięcie macierzy w kierunku góra-dół

reshape Zmiana rozmiaru macierzy, zmiana liczby wymiarów

rot90 Obrót macierzy o 90 stopni

squeeze Usunięcie 1 wymiaru

tril Macierz trójkątna dolna

triu Macierz trójkątna górna

 15

Temat 34
Inne przydatne funkcje

size Podaje rozmiar macierzy

Numer Liczba elementów w macierzy

end Ostatni element macierzy, wektora, …

Isequal Sprawdza czy macierze są sobie równe (funkcje typu is*)

a>0 Macierz zerojedynkowa. Jedynki tam gdzie a>0

any(a>0) 1 gdy jakiś element macierzy >0

find Znajduje elementy spełniające dane kryterium

Przykład:

>> [x,y]=size(a)
>> m=numel(a)
>> b=a(5:end) % elementy wektora od 5 do końca
>> b=(a>0)
>> c=find(a>2)

Temat 35
Macierze rzadkie

Macierzą rzadką nazywamy macierz, której przeważająca większość elementów równa jest 0

a tylko nieliczne mają wartość znaczące. W takim przypadku ze względów pamięciowych

wygodnie jest pamiętać macierz nie jako tablicę, ale poszczególne liczby wraz z adresami.

Przykład:

>> a= sparse([1 2 2 4 4],[3 1 4 2 4],1:5) % tworzy macierz rzadką o elementach: (2,1)->2,
 (4,2)->4, (1,3)->1, (2,4)->3, (4,4)->5

Aby przekształcić macierz rzadką w macierz w postaci normalnej normalną korzystamy z

funkcji full().

 16

WIZUALIZACJA DANYCH

WYKRESY DWUWYMIAROWE

Temat 36
Wykresy dwuwymiarowe funkcji – funkcja plot

plot(X) – rysuje wektor X w funkcji indeksu, w przypadku macierzy traktuje ją jak zestaw

wektorów

plot(X,Y) – wykreśla wektor Y w funkcji wektora X, Gdy X lub Y jest macierzą to wektor

jest rysowany odpowiednio w funkcji kolumn lub rzędów.

plot(X,Y,S) – wykreśla jak funkcja plot(X,Y) ale dodatkowo pozwala wybierać kolor, rodzaj

linii i symbole punktów – patrz tabela poniżej.

Kolor Symbole punktów Rodzaj linii

y – yellow . – point - – ciągła

m – magenta o – circle : – kropkowana

c – cyan x – x-mark -. – kropka-kreska

r – red + – plus -- – kreskowana

g – green * – star

b – blue s – kwadraty

w – white d – romb

k – black v – trójkąt w dół

 ^ – trójkąt w górę

 < – trójkąt w lewo

 > – trójkąt w prawo

 p – pięciokąt

 h – sześciokąt

Przykład:

>> plot(1:10,y) % wykreśla wektor od 1 do 10 w funkcji wektora y
>> plot(1:10,y, 'bx') – j.w. ale dodatkowo wykreśla go w kolorze niebieskim zaznaczając
 punkty krzyżykami.
>> plot(1:10,x, 'bx ', 1:10,y, 'r*') – wykreśla dwa wykresy na jednym

Temat 37
Wykresy dwuwymiarowe funkcji – funkcja fplot

fplot(F,P) – funkcja wykreśla funkcję F daną w postaci łańcucha w przedziale P.

Listę funkcji matematycznych predefiniowanych w MATLABie można uzyskać poprzez

polecenie >> help elfun (funkcje podstawowe) i >> help specfun (funkcje specjalne)

Przykład:

>> fplot('2*sin(x) ',[0 2*pi]) % funkcja 2*sin(x) w przedziale od 0 do 2π

 17

Temat 38
Wykresy dwuwymiarowe funkcji – funkcja ezplot (funkcja obecnie nie jest rekomendowana

przez mathworks)

Bardziej ogólnymi funkcjami służącymi do rysowania wykresów także dla dwu zmiennych

są funkcje typu ez*. Jedną z nich jest funkcja ezplot.

ezplot(F,P) – funkcja wykreśla funkcję F w przedziale P.

Inne funkcje należące do kategorii ez* to: ezcontour, ezmesh, ezmeshc, ezpolar.

Przykład:

>> ezplot(x, 2*y, [0,2*pi]) % wykres funkcji parametrycznej typu x=x(t), y=y(2t), t[0,2π]

Przykład:

>> xt=@(t) cos(3*t)
>> yt=@(t) sin(2*t)
>> fplot(xt,yt); % wykres funkcji parametrycznej

Temat 39
Wykresy dwuwymiarowe funkcji – funkcje hist, starsi, bar, steam

hist(x, m) Wykreśla histogram z podziałem na m przedziałów.

stairs() wykreśla wektor w postaci schodków od największego do najmniejszego elementu

bar(x) wykreśla wektor w postaci słupków (bar)

stem(x) wykreśla wektor w postaci linii pionowych (ystem)

errorbar Wykreśla wektora wartości z błędami

Uwaga: Wywołanie n=hist(X) nie wyświetla wykresu, ale zlicza ilość elementów wektora w 10 równych

przedziałach. Przedziały są tworzone na podstawie najmniejszej i największej wartości wektora

Temat 40
Rysowanie wielu wykresów na wspólnym wykresie graficznym – funkcja hold

>> hold on % wstrzymuje czyszczenie okna graficznego
>> hold off % przywraca tryb domyślny (każdorazowe czyszczenie okna)
>> ishold % testuje tryb rysowania wykresów

Temat 41
Otwieranie wielu okien graficznych – funkcje figure, close, clg, cla

>> figure % otwiera nowe okno graficzne
>> figure(n) % uaktywnia okno graficzne o danym parametrze,
>> close % zamyka okno aktywne lub okno z zadanym parametrem.
>> cla % czyści bieżący wykres
>> clf % czyści aktywne okno graficzne

Temat 42
Wykreślanie niezależnych wykresów w jednym oknie graficznym – funkcja subplot

 18

Funkcja subplot służy do podziału okna graficznego na mniejsze fragmenty. Podziału można

dokonać albo w układzie macierzowym albo podając dokładne wymiary wykresu.

Przykład:

>> subplot(m,n,p) % dzieli okno graficzne na M kolumn i N wierszy (M,N<9). P oznacza
 numer aktualnego wykresu. Można też wywołać jako subplot(mnp)

>> subplot('position',[lewy dolny szerokość wysokość]) % w aktywnym oknie graficznym
 tworzy nowy wykres w zadanym podoknie. Lewy, dolny – współrzędne lewego dolnego
 rogu podokna. Szerokość, wysokość – rozmiary podokna. Wszystkie rozmiary podaje
 się w stosunku do całości okna unormowanego do 1, np.: [0.5 0.5 0.5 0.5]

Temat 43
Skalowanie wykresów – funkcje axis i log-i

axis('auto') domyślny tryb skalowania

axis([xmin, xmax, ymin, ymax]) wykreśla wykres w zadanych przedziałach osi X i Y

axis('off') ukrywa osie

axis('on') przywraca wyświetlanie osi

axis('equal') osie mają proporcjonalne jednostki na obu osiach X i Y

loglog(x) skala logarytmiczna na obu osiach

semilogx(x) skala logarytmiczna na osi X

semilogy(x) skala logarytmiczna na osi Y

Temat 44
Opisywanie wykresów

>> plot(x,y, 'r ') % wykres funkcji
>> title('To jest wykres') % Tytuł wykresu
>> grid off % wyłączenie wyświetlania siatki
>> xlabel('oś X') % podpis osi X
>> ylabel('oś Y') % podpis osi Y
>> text(2,4, 'tu jest punkt') % tekst wstawiony w punkcie (2,4)

Temat 45
Niestandardowe znaki w opisie wykresów

Do wypisywania niestandardowych znaków wykorzystywana jest składnia TeX.

>> text(1,1, '\alpha^{3/2}') % wypisanie w punkcie (1,1) tekstu 
3/2

Temat 46
Zmiana pozostałych parametrów funkcji graficznych.

>> plot(x,y, 'LineWidth',4, 'MarkerSize',10)

Informacje o poszczególnych elementach wykresu można znaleźć w helpie, np: help line

Temat 47
Modyfikacja wykresów w oknie graficznym

Temat 48

 19

Wybór punktów na wykresie – Funkcja ginput

Gdy zachodzi potrzeba wybrania jakiś punktów na wykresie w celu dalszego przetwarzania

korzystamy z funkcji ginput.

Przykład:

>> [x,y]=ginput(2); % pobranie współrzędnych 2 punktów wskazanych w oknie graficznym

 20

WIZUALIZACJA DANYCH

WYKRESY TRÓJWYMIAROWE

Temat 49
Funkcja meshgrid

Funkcja meshgrid – tworzy macierze opisujące położenie węzłów siatki prostokątnej. Służy

do przygotowania danych niezbędnych do stworzenia większości wykresów 3D.

Przykład:

>> [X,Y]=meshgrid(x,y); % tworzy macierze X, Y na podstawie wektorów z węzłami siatki x, y
>> [X,Y]=meshgrid(x); % j.w. ale y=x
>> [X,Y,Z]=meshgrid(x,y,z) % tworzy 3 macierze wykorzystywane do wykresów
 volumetrycznych

Temat 50
Funkcja mesh

Mesh(X,Y,Z) – funkcja mesh rysuje siatkę opisaną przez macierze X,Y,Z. Gdzie macierze X,

Y podają współrzędne punktów siatki a dane w macierzy Z określają wartość funkcji w

punkcie (x,y).

Mesh(X,Y,Z,c) – c – indeksy kolorów w aktualnej mapie kolorów.

Przykład:

>> [x,y] = meshgrid(-3:.125:3); % generacja siatki
>> z = peaks(x,y); % tworzenie wartości funkcji w punktach (x,y)
>> mesh(x,y,z) % tworzy wykres 3D

Temat 51
Inne wykresy 3D typu oparte na funkcji meshgrid

contour3 Wykres konturowy

ezmesh Wykres siatkowy

ezsurf Wykres – powierzchnia

mesh Wykres siatkowy

meshc Wykres jak mesh + poziomice

meshz Wykres jak mesh + zasłony na końcach

ribbon Wykres wstążkowy

Surf Wykres powierzchniowy

Surfc Wykres powierzchniowy + poziomice

Surfl Wykres powierzchniowy + cieniowanie

Waterfall Wykres plasterkowy

Temat 52
Inne wykresy 3D

bar3 Wykres słupkowy

ezplot3 Wykres parametryczny

isosurface Izowarstwy dla danych 3D

plot3 Linia w 3 wymiarach

scatter3 Wykres typu scatter

slice Przekrój przez wykres wolumetryczny

 21

Przykład:

>> t = 0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t) % linia śrubowa
>> ezplot3('sin(t)','cos(t)','t',[0,6*pi]) % linia śrubowa
>> a=rand(5); generowanie danych
>> bar3(a) % wykres słupkowy

Temat 53
Obiekty 3D

cylinder Generacja walca

Elipsoid Generacja elipsoida

fill3 Generacja wielokąta

sphere Generacja kuli

Przykład:

>> sphere % wyświetla sferę
>> [x,y,x]=sphere; % zwraca 3 macierze z danymi do wyrysowania kuli za pomocą funkcji
 mesh lub surf

Temat 54
Widoki wykresów 3D

zlabel Opis osi z

view Zmiana domyślnego punktu obserwacji

view(azymut, elewacja) Okresla punkt obserwacyjny za pomocą azymutu i elewacji

view(x,y,z) Okresla punkt obserwacji w układzie kartezjańskim

view(2) Obserwacja azymut=0, elewacja=90

view(3) Domyślny punkt obserwacji: azymut=-37.5 , elewacja= 30

hidden on Wyświetlanie ukrytych krawędzi

hidden off Domyślny, ukrywa niewidoczne krawędzie

shading flat Powierzchnia z dyskretnymi kolorami

shading intern Powierzchnia z wypełnieniem kolorami interpolowanymi

shading faced Powierzchnia z dyskretnymi kolorami i siatką

caxis Przeskalowanie kolorów

Temat 55
Wizualizacja 3D

camlight Definiuje oświetlenie we współrzędnych kamery

Light Definiuje obiekt świecący

lightangle Położenie kamery we współrzędnych sferycznych

lighting Algorytm liczenia oświetlenia: flat, gouraud, phong, none

material Określa właściwości odbiciowe materiału: shiny, dull, metal, default

Przykład:
sphere

lightangle(-5,130)

lighting gouraud

 22

Temat 56
Wizualizacja wolumetryczna

Dane trójwymiarowe możemy przedstawić albo przez wyświetlanie poszczególnych

przekrojów, powierzchni o stałej wartości lub przepływów.

coneplot Pole wektorowe 3D

contourslice Kontury w warstwach

isosurface Powierzchnia o stałej wartości (izopowierzchnia)

slice Płaszczyzna przekroju

streamline Linie przepływu

streamparticles Cząstki wraz z liniami przepływu

streamribbon Wstęgi zgodne z przepływem

streamslice Przepływ w warstwach lub na powierzchniach

streamtube Przepływ pokazany za pomocą walcy
quiver Pole wektorowe 2D

Wizualizacja pola wektorowego w punktach (x,y) o wartościach (u,v): quiver(x,y,u,v)

Przykład:

[x,y] = meshgrid(0:0.2:2,0:0.2:2);

u = cos(x).*y;

v = sin(x).*y;

quiver(x,y,u,v)

Linie prądu: streamline(X,Y,Z,U,V,W,startx,starty,startz)

Gdzie startx,starty,starty definiuje początk linii prądu

Przykład:

[x,y] = meshgrid(0:0.1:1,0:0.1:1);

u = x;

v = -y;

quiver(x,y,u,v)

startx = 0.1:0.1:1;

starty = ones(size(startx));

streamline(x,y,u,v,startx,starty)

Przykład streamtube:

Szerokość tuby jest proporcjonalna do znormalizowanej dywergencji pola wektorowego

load wind

[sx sy sz] = meshgrid(80,20:10:50,0:5:15);

verts = stream3(x,y,z,u,v,w,sx,sy,sz);

div = divergence(x,y,z,u,v,w);

streamtube(verts,x,y,z,-div);

% Define viewing and lighting

view(3)

shading interp

Przykład: slice(X,Y,Z,V,sx,sy,sz)

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);

v = x.*exp(-x.^2-y.^2-z.^2);

xslice = [-1.2,.8,2];

yslice = 2;

zslice = [-2,0];

slice(x,y,z,v,xslice,yslice,zslice)

 23

PODSTAWY PROGRAMOWANIA:

SKRYPTY I FUNKCJE

Temat 57
Tworzenie skryptów

Skrypt jest plikiem tekstowym zawierającym zestaw funkcji i poleceń Matlaba. Pliki

skryptowe mają rozszerzenie .m.

Pliki skryptowe można tworzyć w każdym edytorze tekstowym. Najwygodniej wykorzystać

edytor Matlaba. Dostęp do edytora jest możliwy przez File -> New-> M-file lub przez

odpowiednią ikonę.

Temat 58
Opisywanie skryptów

Każdy skrypt powinien mieć krótki opis zawartości i działania. Opis umieszcza się za

znakiem %. Ze względów praktycznych opis należy umieszczać za podwójnym znakiem

procenta (%%).

Począwszy od Matlaba 7 znak %% oznacza nową fragment kodu.

Znaki %% oraz % są też inaczej traktowane w czasie konwersji skryptu do html-a.

Opis pliku można wywołać w Matlabie przy pomocy polecenia help nazwa_skyptu. Za opis

pliku traktowane są pierwsze linie komentarza nieprzerwane liniami innego typu.

Przykład:

%% To jest test opisu skryptu piewszy_skrypt.m
%% Jestem w skrypcie
% czy widać tę linię?
a=5; % jakaś komenda
% czy widać tę linię

Temat 59
Zmienne w skryptach Matlaba

Skrypty do przechowywania zmiennych używają przestrzeni roboczej Matlaba. Z jednej

strony nie trzeba definiować mu zmiennych, ale istnieje niebezpieczeństwo użycia i

zamazania zmiennych istniejących już w przestrzeni roboczej.

Temat 60
Wypisywanie kroków wykonywanych w skrypcie na ekran.

Analogicznie do poleceń wypisywanych w Oknie Poleceń, polecenia wykonywane w skrypcie

dają echo na ekranie. Aby przyśpieszyć pracę skryptów oraz dla zapewnienia uniwersalności

(dobry nawyk dla programistów) należy wszystkie polecenia wykonywać z opcją ukrywania

echa (o ile celem pliku nie jest narysowanie wykresu). Do ukrywania echa stosuje się średnik

na końcu linii polecenia – patrz Temat 7.

 24

Temat 61
Tworzenie funkcji

Funkcja tak jak skrypt jest plikiem tekstowym zawierającym zestaw funkcji i poleceń Matlaba

i zaczynać się powinna od słowa kluczowego function. Pliki funkcji mają również

rozszerzenie .m.

UWAGA: Ważne jest aby nazwa funkcji i nazwa pliku były takie same.

Pliki funkcji można tworzyć w każdym edytorze tekstowym. Najwygodniej wykorzystać

edytor Matlaba.

Podstawową różnicą miedzy funkcją a skryptem jest sposób przechowywania danych. Skrypt

czyni to w przestrzeni roboczej, natomiast funkcja przechowuje je poza przestrzenia roboczą,

co pozwala na dublowanie nazw zmiennych z przestrzenią roboczą. Inaczej mówiąc funkcja

jest hermetyczna i pokazuje na zewnątrz tylko dane wyjściowe, lub zmienne specjalnie

udostępnione przy pomocy operatora global.

Temat 62
Szkielet funkcji

function [x,y,z]=nazwa_funkcji(a,b,c,d)
%% [x,y,z]=nazwa_funkcji(a,b,c,d)
%% Funkcja zwraca 3 wektory x,y,z dla danych parametrów wejściowych a,b,c,d

%%Koniec nazwa_funkcji.m

Funkcja powinna posiadać następujące elementy:

 nagłówek funkcji – definicje parametrów funkcji - argumentów, (a, b, c, d – w naszym

szkielecie) oraz parametrów wyjścia - wartości, (x, y, z – w naszym szkielecie);

 komentarz z opisem do help-u – opisuje co funkcja robi, opisuje argumenty funkcji oraz

wartości wyjściowe;

 analiza liczby parametrów wejściowych – moduł funkcji analizuje liczbę parametrów

wejściowych, czy jest ich wystarczająco dużo do wykonania funkcji i czy ewentualnie

można przyjąć wartości domyślne dla niepodanych parametrów (na razie się tym nie

zajmujemy);

 analiza własności parametrów wejściowych – moduł funkcji sprawdza czy wartości

wprowadzonych argumentów umożliwiają poprawne wykonanie funkcji (na razie się tym

nie zajmujemy);

 implementacja algorytmu – zapewnia poprawność obliczeń numerycznych i przygotowuje

wartości wyjściowe.

Funkcje typu Anonymous @

>>SQR=@(x) x.^2;

>>S=@(x,y) (x.^2+y.^2);

>>F=@(x,y) [x.^2+y,y-x];

Funkcja powinna posiadać następujące elementy:

Uwaga: Począwszy od wersji Matlak 2016b możliwe jest definiowanie funkcji wewnątrz

skryptu.

 25

Temat 63
Postępowanie przy pisaniu funkcji

Najwygodniej najpierw napisać skrypt a po przetestowaniu przerobić go w funkcję.

Temat 64
Przykład funkcji i wywołania funkcji

Zawartość pliku przykład_1.m:

function [x,y]=przyklad_1(a,b)
%% [x,y]=przyklad_1(a,b)
%% Funkcja rysuje wykres funkcji y=a*cos(x+(pi/b))
%% zwraca 2 wektory x – wektor zmiennej x, y - wektor z wynikami funkcji
%% dla danych parametrów a, b. Funkcja rysuje wykres funkcji w aktywnym oknie.
x = 0:0.001:2*pi;
y = a.*cos(x+(pi./b));
plot(x,y);
%Koniec przyklad_1.m

Wywołanie funkcji z Okna Poleceń:

>> przyklad_1(2,2); % rysuje wykres funkcji
>> [ax,ay]=przyklad_1(2,2); % oprócz wykresu wyprowadza do przestrzeni roboczej dwa
 wektory ax, ay.
>> parametr1=3;, parametr2=4;
>> [ax,ay]=przyklad_1(parametr1, parametr2); % j.w.

Temat 65
Pod funkcje

W jednym pliku zawierającym funkcję można umieścić więcej funkcji. Przy czym tylko

pierwsza funkcja jest widoczna na zewnątrz. Wszystkie pozostałe funkcje mogą być

wywoływane tylko w obrębie danego pliku.

DEBUGOWANIE W

MATLABIE

Debugowanie w matlabie może być realizowane za pomocą edytora lub komend. Wyróżnia

się trzy typy przerwań wykonania programu: standardowe, warunkowe oraz związane z

błędem. W edytorze skryptu lub funkcji po lewej stronie gdzie znajdują się numery linie a

następnie znak „—„ prawym przyciskiem ustawiamy odpowiedni kolor przerwania:

- czerwony odpowiada standardowemu przerwaniu

- żółty warunkowemu (przy czym ustawiamy odpowiedni warunek Set/Modify Condition).

Ustawienie przerwania związanego z błędem odbywa się poprzez przycisk RUN i wybranie

odpowiedniej opcji:

- pause on Errors to pause on all errors,

- pause on Warnings to pause on all warnings

- pause on NaN or Inf to pause on NaN (not-a-number) or Inf (infinite) values.

W przypadku linii komend mamy następujące możliwości:

 26

- dbstop in myprogram at 2

oznacza przerwanie standardowe w linii nr 2 w programie myprogram.m

- dbstop in myprogram at 6 if n>=4

oznacza warunkowe przerwanie programy w linii nr 6 jeśli parametr n>=4 (np. w pętli)

- dbstop if error

oznacza przerwanie, jeśli wystąpi błąd

Po ustawieniu funkcji dbstop uruchamiamy program. Po przerwaniu wykonywania programu

w oknie poleceń pojawia się znak K>> oznaczający tryb debugowania i możliwości

wykonywania komend z okna poleceń. Wyłączenie wszystkich przerwań odbywa się za

pomocą komendy:

dbclear all in myprogram

Dodatkowa możliwości to zatrzymanie programu przy użyciu „keyboard” z możliwością

wykonania komendy z linii poleceń. Zamkniecie modu debugowego odbywa się w tym

przypadku za pomocą komendy dbquit.

INSTRUKCJE W MATLABIE

Temat 66
Instrukcja for

Instrukcja for pozwala na powtarzanie wybranego fragmentu kodu określoną ilość razy.

Szablon instrukcji for (uwaga na przecinek):

....
for zmienna_iterowana = macierz_wartości ,
.....
Kod do wielokrotnego powtarzania
....
end
.....

Pętle w wybranych przypadkach można przerywać przy pomocy instrukcji break.

Przykład:

a=zeros(10,5); % alokacja pamięci
for i=1:10,
 for j=1:5,
 a(i,j)=i*j;
 end
end

Instrukcja for dla obliczeń równoległych przyjmuje postać parfor.

Szablon instrukcji for (uwaga na przecinek):

....
parfor zmienna_iterowana = macierz_wartości,
.....

 27

Kod do wielokrotnego powtarzania
....
end
.....

Przykład:

parpool(3)
parfor i=1:3
c(:,i)=eig(rand(1000));
end

Temat 67
Instrukcja while

While stanowi pętle warunkową, fragment kodu w pętli będzie wykonywany dopóki jest

spełnione wyrażenie warunkowe.

Szablon instrukcji while (uwaga na przecinek):

....
while wyrażenie_warunkowe,
.....
Kod do wielokrotnego powtarzania
....
end
.....

Przykład:

licznik1=0; , licznik2=0; , suma=0; % definicja stałych
while (licznik1<10 & licznik2<10), % znak & oznacza and, opis – help ops
 licznik1=licznik1+0.1;
 licznik2=licznik2+0.2;
 suma=licznik1+licznik2;
end

Temat 68
Instrukcja warunkowa if

Instrukcja pozwala na wykonanie jednego z kilku fragmentów kodów zawartego pomiędzy

instrukcjami if, elseif, else. Wybór realizowanego kodu zależy od spełnienia odpowiednich

wyrażeń warunkowych, gdy żadne z nich nie jest spełnione jest wykonywany kod

występujący za operatorem else.

Szablon instrukcji if:

If wyrażenie_warunkowe_1
 Kod wersja 1
elseif wyrażenie_warunkowe_2
 Kod wersja 2
elseif wyrażenie_warunkowe_3
 Kod wersja 3

 28

......
else
 Kod wersja N
end

Przykład:

%% y=a*x^2+b*x+c
a=1; , b=2; , c=3; % definicja stałych
wyznacznik=b^2-4*a*c; % np. wyznacznik równania kwadratowego
if wyznacznik>0
 x1=(-b+sqrt(wyznacznik))/(2*a); , x2=(-b-sqrt(wyznacznik))/(2*a);
elseif wyznacznik==0
 x1=-b/(2*a); , x2=x1;
else
 x1=NaN; , x2=NaN;
end

Temat 69
Instrukcje break i return

Obie instrukcje powodują przerwania wykonywania kodu. Funkcja break powoduje

wyskoczenie z najgłębiej zagnieżdżonej pętli do wyższej pętli. Funkcja return powoduje

natychmiastowe opuszczenie danej funkcji lub skryptu i powrót do miejsca jej wywołania.

Temat 70
Instrukcja switch-case

W przypadku listy znanych argumentów wywołania wygodnie jest skorzystać z funkcji

switch-case.

Szablon instrukcji switch-case:

switch p
 case 1
 instrukcja 1
 case 2
 instrukcja 2
 otherwise
 inna instrukcja
end

Instrukcja try

try
 instrukcja 1 (jesli zakonczy się błędem wykonana będzie isntrukacja 2)
catch
instrukcja 2
end

 29

INNE PRZYDATNE FUNKCJE

Temat 71
Funkcje pomiaru czasu

cputime Czas CPU który upłynął od uruchomienia Matlaba (ogólnie do pomiaru czasu)

tic Start stopera

toc Zatrzymanie stopera

etime Czas, który upłynął pomiędzy dwoma podanymi datami w formie wektorów

pause Zatrzymanie na x sekund – zwykle oczekiwanie na odpowiedź użytkownika przy

programach interakcyjnych

Temat 72
Testowanie funkcji – czas wykonywania funkcji – tic i toc

W przypadku testowania programów najwygodniej używać funkcji tic i toc.

Przykład:

tic
testowana_Funkcja
toc

>> Elapsed time is 2.188000 seconds.

Temat 73
Funkcje daty i czasu

Funkcje czasu i daty znajdują się w grupie funkcji timefun – help timefun

now Aktualna data jako liczba dni od 01.01.0

date Aktualna data i godzina jako zmienna łańcuchowa

clock Aktualna data i godzina jako wektor

datenum data jako liczba dni od 01.01.0

datestr data jako zmienna łańcuchowa

datevec Transformacja składników daty do postaci wektora

calendar Kalendarz

weekday oblicza dzień tygodnia dla podanej daty

eomday zwraca liczbę dni w miesiącu w podanym roku i

miesiącu

datetick formatowanie daty

Temat 74
Funkcje w Matlabie – ciąg dalszy – zmienne globalne global

Przypomnienie: zmienne w funkcji są lokalne – nie widać ich na zewnątrz. Tak samo zmienne

w obszarze roboczym są niewidoczne dla funkcji chyba, że są jej parametrem wejściowym.

Nawet wtedy jednak są przekazywane przez wartość, także ich wartość modyfikowana

wewnątrz funkcji wróci do wartości początkowej po wyjściu z funkcji. Jednak czasami takie

 30

ograniczenia nie są wygodne. Gdy chcemy, aby zmienne z przestrzeni roboczej były dostępne

wewnątrz funkcji bez definiowania ich jako parametry funkcji, wtedy deklarujemy je jawnie

w przestrzeni roboczej oraz w samej funkcji poprzez global. Takie działanie jest jednak

niebezpieczne, bo może dojść do konfliktu nazw pomiędzy funkcją i przestrzenią roboczą, lub

niepożądaną zmiana ich wartości.

Przykład:

function [.....]=fun(....)
%% opis funkcji
global a1 a2 a3;
.....
% koniec funkcji

%% w przestrzeni roboczej
global a1 a2 a3;
a1=....
a2=.....
a3=.....

Temat 75
Funkcje w Matlabie – ciąg dalszy – funkcja feval

Często istnieje potrzeba, aby dana funkcja matlabowska (plik *.m) była w stanie

przeprowadzić obliczenia dla dowolnych funkcji matematycznych zdefiniowanych poza

plikiem *.m. Wtedy stosuje się funkcję feval.

Definicja funkcji feval:

>> y = feval(Nazwa_funkcji, x1xn) % Nazwa_funkcji - zmienna łańcuchowa
%% , x1xn – zadane argumenty funkcji

Przykład:

y= feval(‘cos’,[0:0.01:pi]);

Przykład: Funkcja suma_ciagu, która wylicza sumę n wyrazów dowolnego ciągu

function s=suma_ciagu(n,ciag)
%% s=suma_ciągu(liczba wyrazów, 'nazwa_funkcji')
i=[1:n];
s=sum(feval('ciag',i)
% koniec funkcji suma_ciagu

function [a]=ciag(n)
%% [a]=ciag(n) – tu definiuję jak wygląda n-ty wyraz ciągu
a=0.5 .^n
%koniec funkcji ciag

Temat 76
Operacje łańcuchowe

>> a='to jest lancuch'; % definicja łańcucha i przypisanie go zmiennej a
>> b='drugi';
>> c=strat(a, b); % połączenie łańcuchów. Zmienna c = `to jest lancuch drugi`
>> d=[a b]; % j.w.

 31

>> t=num2str(15.4); % Zamiana liczby na łańcuch
>> d=str2num(`15.4`); % Zmiana łańcucha na liczbę

Temat 77
Rekurencja

Rekurencja jest eleganckim, ale bardzo kosztownym sposobem programowania. Można ją

stosować tam gdzie mamy do czynienia z zależnościami typu f(n+1)=g(f(n)).

Przykład:

function s=silnia(n)
%% Obliczanie silni metodą rekurencyjną
s=1;
for k=2:n,
 s=k*silnia(k-1); % funkcja wywołuje sama siebie
end

OKNA DIALOGOWE

Temat 78
Wybrane funkcje do wyświetlania komunikatów na ekranie komputera

inputdlg – otwiera okno służące do wprowadzania danych

msgbox – wypisuje komunikat w formie błędu, ostrzeżenia lub pomocy

errordlg – wypisuje komunikat o błędzie

listdlg – umożliwia wybór z listy

questdlg – definiuje dowolne okno dialogowe

uigetfile – otwiera okno systemem plików i zwraca nazwę pliku oraz katalog

uiputfile – otwiera okno systemem plików i zwraca nazwę pliku oraz katalog

 32

ROZWIĄZYWANIE UKŁADÓW

RÓWNAŃ LINIOWYCH

Temat 79
Rozwiązywanie układów równań liniowych

Matlab ma bardzo rozwinięte algorytmy rozwiązywania równań liniowych. W zależności od

potrzeb można używać metod zaawansowanych (Matlab stara się dobrać metodę w tle) lub

ręcznie poprzez Metodę Gaussa, uzyskiwanie rozkładu macierzy na macierze trójkątne itd.)

Układ równań linowych można zapisać wektorowo w postaci:

A*x=b, gdzie A macierz współczynników, x – wektor zmiennych [x1...xn], b – wektor

wartości równań [b1...bm].

Uwaga: z rozwiązaniem układu równań nie ma problemu pod warunkiem, że układ nie jest

sprzeczny, jest dobrze określony, i jest liniowo niezależny. W przeciwnym wypadku trzeba

stosować bardziej zaawansowane metody obliczeń.

Do sprawdzania uwarunkowania macierzy służy funkcja cond(a). Duże wartości funkcji cond

świadczą o złym uwarunkowaniu – to wpływa na dokładność obliczeń numerycznych.

Temat 80
Metody obliczania układów równań

 operator dzielenia lewostronnego: x=A\b – praktycznie jest tu stosowana metoda

eliminacji Gaussa z częściowym wyborem elementu głównego

 przez mnożenie wektora wynikowego przez macierz odwrotna współczynników

x=inv(A)*b

Przykład:

% rozwiązanie układu równań w postaci [a]*[x]=[b]
>> a = [1 -4 3; 3 1 -2; 2 1 1]; % definicja macierzy współczynników
>> b = [-7; 14; 5]; % definicja wektora wyników
>> x = inv(a)*b; % rozwiązanie metodą odwrócenia macierzy
>> x = a\b; rozwiązanie metodą dzielenia lewotronnego

Uwaga: równanie x=b/A daje wynik rozwiązania układu równań w postaci x*A=b.

Temat 81
Eliminacja Gaussa

Podstawowa metodą rozwiązywania układów liniowych jest metoda eliminacji Gaussa – tzw.

rozkład LU. Polega on na znalezieniu macierzy L i U takich, że A=L*U, gdzie U jest

macierzą trójkątną górną, a L macierzą trójkątną dolną.

W Matlabie eliminację Gausa przeprowadza funkcja lu.

Przy wywołaniu [L,U]=lu(A) U jest macierzą trójkątną górną, ale L nie zawsze będzie

macierzą trójkątną dolną.

Przy wywołaniu [L,U,P]=lu(A) U jest macierzą trójkątną górną, L nie zawsze będzie macierzą

trójkątną dolną, a P macierzą permutacji (zmienia kolejność wierszy w macierzy A). Zachodzi

tu zależność L*U=P*A.

 33

Temat 82
Inne funkcje związane z układami równań liniowych

det wyznacznik macierzy

inv odwrotność macierzy

eig wartości własne

chol rozkład Cholesky’ego, rozkład macierzy A na macierz L i L’ takie, że A=L’*L

 34

ROZWIĄZYWANIE RÓWNAŃ

W SPOSÓB SYMBOLICZNY

Deklaracje zmiennych symbolicznych:

syms a b c x

zapisywanie równań:

eq=a*x^2+b*x+c==0

podstawienie do równania: subs(eq,val)

rozwiązywanie równań:

S=solve(eq)

S=solve(eq,x) – rozwiązanie ze względu na zmienną x

S=solve(eq,x,’Real’,’true) – tylko rzeczywiste rozwiązania

solve(x>0,x<2)

assume(x/2,’integer’)

lhs(eqn) – lewa strona równania

rhs(eqn) – prawa strona równania

Równania różniczkowe rozwiązujemy funkcją dsolve.

Np. równanie w postaci dy/dt=ay

syms y(t) a

eq=diff(y,t)==ay

S=dsolve(eq)

Równanie II stopnia: d2y/dt2=ay

Eq=diff(y,t,2)==a*y;

dsolve(eq)

Ewentualnie z warunkami początkowymi

cond=y(0)==5

dsolve(eq, cond)

Całkowanie symboliczne przy użyciu funkcji int

Przykład:

syms x

expr=-2x/(1+x.^2)^2

całka nieoznaczona

F=int(ext)

Całka oznaczona

F=int(ext,[0 1])

Gdy brak rozwiązania można wykonać obliczenia numeryczne vpa(F)

 35

ROZWIĄZYWANIE UKŁADÓW

RÓWNAŃ NIELINIOWYCH

Temat 83
Rozwiązywanie równań nieliniowych

Przy rozwiązywaniu równań poszukujemy pierwiastków równań, maksimów i minimów

funkcji. Pierwiastki rzeczywiste równania, (czyli miejsca zerowe) –> f(x)=0.

W Matlabie funkcja fzero wyszukuje pierwiastek równania w pobliżu zadanej wartości

zmiennej. Czyli do znalezienia wszystkich pierwiastków równania trzeba podać okolice gdzie

ma on występować.

Minimum lokalne funkcji poszukuje się analogicznie do pierwiastków przy pomocy funkcji

fminbnd.

Maximum lokalne funkcji poszukuje się przez poszukiwanie minimum funkcji odwrotnej do

danej, czyli -> -f(x).

W przypadku wielomianów wartości funkcji wyszukuje się poprzez funkcje roots(c), gdzie c

jest wektorem współczynników wielomianu.

W celu obliczenia wartości wielomianu korzystamy z funkcji polyval(c,x), gdzie x jest liczbą,

wektorem lub macierzą dla której liczymy wartości wielomianu.

Przykład:

>> x=fzero('sin',10); % szuka miejsca zerowego funkcji sinus w okolicach 10
>> m=fminbnd('sin',10,11); % szuka najmniejszej wartości funkcji sinus w przedziale (10,11)
>> p=[3,-2,4,1]; % definicja wielomianu p=3x^3-2x^2+4x+1
>> r=roots(p); % zwraca pierwiastki równania
>> w=polyval(p,2); % zwraca wartość wielomianu 3*2^3-2*2^2+4*x+1

Funkcja fsolve rozwiązuje nieliniowe układy równań wielu zmiennych F(x) = 0

Podstawowe wywołanie

x = fsolve(fun,x0)

gdzie fun jest nazwa funkcji lub uchwytem do funkcji @, zaś x0 jest wektorem startowym

opcjonalny trzeci parametr funkcji fsolve pozwala ustawiać dodatkowe parametry metody

minimalizacyjnej oraz wypisywanie kolejnych integracji na ekran np.

option=optimoptions(‘fsolve’,’Display’,’iter’);

Przykład:

2x1-x2=exp(-x1)
-x1+2x2=exp(-x2)
Przepisując układ do postaci F(x) = 0:

2x1-x2-exp(-x1)=0
-x1+2x2-exp(-x2)=0

Definiujemy funkcję

>>function F = myfun(x)

>>F = [2*x(1) - x(2) - exp(-x(1));

 >> -x(1) + 2*x(2) - exp(-x(2))];

Definiujemy dodatkowe opcje w celu wyświetlenia kolejnych kroków iteracji

>>options = optimoptions('fsolve','Display','iter');

Jako wektora startowy przyjmujemy

 36

>> x0 = [-5 -5].

>>[x,fval] = fsolve(@myfun,x0,options)

 37

INTERPOLACJA I

APROKSYMACJA FUNKCJI

Temat 84
Interpolacja

Interpolacją nazywamy zadanie znalezienia krzywej przechodzącej przez zadane punkty. Te

zadane punkty nazywa się węzłami interpolacji.

W Matlabie stosuje się kilka metod interpolacji: wielomianami pierwszego i trzeciego

stopnia, metodą najbliższych sąsiadów oraz za pomocą funkcji sklejanych. Interpolacje

stosuje się do tzw. zagęszczania tabel. Np. mamy tabelę z krokiem dla osi x równym 1, a

chcemy stworzyć tabelę z krokiem 0.2.

Temat 85
Funkcja Interp1

yi=interp1(x, y, xi, ’metoda’) gdzie:

x, y – wektory współrzędnych węzłów interpolacji,

xi – wektor punktów na osi X dla których będą obliczane interpolowane wartości yi

metoda:
'linear' funkcja łamana

'spline' funkcja sklejana 3-go stopnia

'cubic', 'pchip' wielomian 3-go stopnia

'nearest' funkcja najbliższego sąsiedztwa

Przykład:

% Interpolacja funkcji sinus, na wykresie węzły zaznaczone są punktami, dodatkowo
% rysowana jest wzorcowa funkcja.
>> x=0:10; y = sin(x); xi = 0:.25:10;
>> yi = interp1(x, y, xi);
>> plot(x, y, 'o', xi, yi, sin(xi))

Temat 86
Funkcje interp2, interp3, interpn

Funkcje interpolujące w 2 i 3 wymiarach dla danych określonych na regularnej siatce. Do

generacji siatki należy używać funkcji meshgrid

Funkcja interpn wymaga generacji siatki przy użyciu funkcji ndgrid

Przykład:

>> [x,y]=meshgrid(xv,yv); xv i yv są wektorami
>>zi=interp2(x,y,z,xi,yi); % x, y, z – dane funkcji, xi, yi – nowe zagęszczone punkty
>> [x,y,z]=meshgrid(xv,yv,zv);
>> vi=interp3(x,y,z,v,xi,yi,zi); % x, y, z, v – dane funkcji, xi, yi, zi – nowe zagęszczone punkty

Funkcje griddata

Funkcja używana jest do interpolacji wartości zdefiniowanych na nieregularnej siatce na

siatkę regularną

Przykład:

 38

>> V = griddata(x,y,v,X,Y,metoda)
% x, y wektory definiujące położenie punków dla których zdefiniowane są wartość v
% X , Y wektory lub macierze siatki do których interpoluje się dane zdefiniowane dla wektora
v
Metoda:
 'nearest','linear','natural','cubic'

Funkcja scatterInterpolant - interpolacja 2-D lub 3-D danych rozproszonych

(analogiczna griddedInterpolant)

Przykład:
x = rand(10,1);
y = rand(10,1);
z = exp(-x.^2-y.^2);
Tworzenie obiektu: F = scatteredInterpolant(x,y,z);

Dokonanie interpolacji

[X,Y]=meshgrid(0:0.1:1,0:0.1:1);

Z=F(X,Y);

Temat 87
Aproksymacja – funkcja polyfit

Aproksymacja oznacza przybliżanie tzn. zastępowanie jednych wartości innymi,

wygodniejszymi, z jakich względów. Matlab pozwala na aproksymację wielomianem.

Przykład:

p=polyfit(x,y,r); % x, y – serie danych, r – zadany stopień wielomianu przybliżającego

Ogólna postać wywołania funkcji polyfit

[p,s,mu] = polyfit(x,y,n)

p - wektor współczynników wielomianu

s - struktura opisująca błędy zawierająca:

R - czynnik dekompozycji QR macierzy Vandermonde’a

df - liczba stopni swobody

normr - norma wartości rezydualnych

mu - dwuelementowy wektor [mean(x), std(x)]

[y,delta] = polyval(p,x,S)

delta - błąd aproksymacji dla 95% przedziału ufności

 39

NUMERYCZNE RÓŻNICZKOWANIE FUNKCJI

Temat 88
Numeryczne różniczkowanie funkcji

Przybliżoną wartość pochodnej można obliczyć przez obliczenie różnic pomiędzy

wartościami tych samych współrzędnych sąsiadujących punktów funkcji zadanej

numerycznie. Korzysta się tu z definicji pochodnej funkcji:

     2 1

2 1

d f x f x f x

dx x x






Do wykonania tej operacji wykorzystuje się funkcję diff(), która oblicza różnice pomiędzy

sąsiadującymi elementami wektora.

Przykład

>> dxdy = diff(y)./diff(x) % y jest wektorem z wartościami funkcji w punktach x

Temat 89
Inne funkcje związane z numerycznym obliczaniem pochodnej.

gradient Numeryczne obliczenie gradientu funkcji

del2 Laplasian funkcji

Przykład

>> v = -2:0.2:2;

>> [x,y] = meshgrid(v);

>> z = x .* exp(-x.^2 - y.^2);

>> [px,py] = gradient(z,.2,.2);

>> contour(v,v,z)

>> hold on

>> quiver(v,v,px,py)

>> hold off

 40

CAŁKOWANIE NUMERYCZNE

Temat 90
Całkowanie numeryczne

Problem polega na znalezieniu całki oznaczonej funkcji f(x) na przedziale <a,b>. Jest to

łatwe, gdy znana jest funkcja pierwotna F(x) taka, że F(x)’=f(x) nie zawsze jest to jednak

możliwe. Metody całkowania numerycznego (kwadratury) polegają na przybliżeniu funkcji

podcałkowej f na danym przedziale <a,b> lub jego podprzedziałach przy pomocy innej

funkcji, dla której wartość całki jest określona analitycznie. Matlab stosuje kwadratury

Newtona-Cotesa - quad (interpolacja wielomianem drugiego stopnia) i Simpsona - quadl

(interpolacja wielomianowa – dobierany stopień wielomianu).

Q=quad(f,a,b,tol,trace);

Q=quadl(f,a,b,tol,trace);

f – łańcuch zawierający nazwę funkcji, funkcja musi być umieszczona w odpowiednim

skrypcie, musi zwracać wektor wartości a jej argumentem jest wektor elementów lub musi

być zdefiniowana przy użyciu operatora @

a,b – przedział całkowania,

tol – wymagana tolerancja względna, domyślnie 10^(-3)

trace – parametr opcjonalny, pozwala na rysowanie wykresu z węzłami kwadratury.

Przykład 1

function [y] = funkcja_calkowana(x)
%% funkcja
y=sin(x.*x);
%% Koniec

%%Wywołanie funkcji całkowania
>> q1 = quad(‘funkcja_calkowana’,0,pi,1e-5,1);
>> ql = quadl(‘funkcja_calkowana’,0,pi,1e-5,1);

Przykład 2:

>> fs = @(x) sin(x);
>> ql = quad1(fs,0,pi,1e-5,1);

W obecnej wersji matlaba rekomendowane jest używanie funkcji integral
q = integral(fun,xmin,xmax)
q = integral2(fun,xmin,xmax,ymin,ymax)
q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)

Temat 91
Inne funkcje związane z całkowaniem numerycznym funkcji

dblquad obliczanie całek podwójnych

trapz całkowanie metodą trapezów

triplequad obliczanie całek potrójnych

Przykład:

https://www.mathworks.com/help/matlab/ref/integral.html#d123e695314
https://www.mathworks.com/help/matlab/ref/integral2.html#d123e696205
https://www.mathworks.com/help/matlab/ref/integral3.html#d123e697102

 41

>> F = @(x,y)y*sin(x)+x*cos(y);

>> Q = dblquad(F,pi,2*pi,0,pi);

>> X=[1:0.1:10];
>> Y=sin(X);
>> trapz(X,Y)

 42

OBSŁUGA BŁĘDÓW

Temat 92
Komunikat błędu – funkcja error

Funkcja error wypisuje komunikat błędu: error(‘to jest błąd’)

W celu wyprowadzenia na ekran komunikatu o błędzie w postaci okienka należy użyć funkcji

errordlg(´errorstrin´,´dlgname´).

Przykład:

>> error(‘Cos jest nie tak’);
>> errordlg(‘Cos jest nie tak’,’Komunikat o błędzie’);

Temat 93
Komunikat ostrzeżenia – funkcja warning

Wypisuje komunikat ostrzeżenia.

Przykład:

>> warning(‘to jest ostrzeżenie’);

Temat 94
Zmienne standardowe: nargin, nargout

Liczba parametrów w definicji funkcji może się różnić od liczby parametrów, jaką podaje

użytkownik. Zmienna standardowa nargin określa dla danego wywołania funkcji z iloma

parametrami funkcja ta została wywołana. Odpowiednio, zmienna nargout określa ile

parametrów wyjściowych zostanie pobranych przez użytkownika.

Przykład:

function [y1, y2, y3, y4]=funkcja_x(x1, x2, x3, x4)
%% [y1, y2, y3, y4]=funkcja_x(x1, x2, x3, x4)
% y1 ...y4 parametry wyjściowe funkcji
% x1....x4 parametry wejściowe funkcji

if (nargin<1), % nie ma wprowadzonych parametrów – wprowadzamy wartości domyślne
 x1=0; x2=0; x3=0; x4=0; % parametry wejściowe funkcji
elseif(nargin<2) % wprowadzono tylko jeden parametr
..... % jakaś akcja, np. komunikat błędu
elseif(nargin<3)
...... % jakaś akcja
end
% wszystkie warunki wprowadzania zostały sprawdzone

% testowanie ile parametrów wyjściowych chce otrzymać użytkownik, jeżeli użytkownik nie
chce dodatkowych parametrów wyjściowych szkoda czasu na ich obliczanie
if(nargout>1)
y2 =
y3=
y4=
% koniec funkcji

 43

Zmienne nargin, nargout mogą być wykorzystywane do sprawdzania poprawności liczby

wprowadzonych lub wyprowadzanych zmiennych z funkcji.

Przykład:

function funk(x,y)
if nargin ~= 2
 error('Wrong number of input arguments')
end

UWAGA: Do wprowadzania i wyprowadzania dowolnej liczby dowolnych elementów do i z

funkcji wykorzystuje się odpowiednio funkcję varargin oraz funkcję varargout.

Temat 95
Reagowanie na nieprawidłowy argument funkcji

Do sprawdzenia czy dana zmienna ma oczekiwaną przez nas postać wykorzystujemy

operatory typu is*.

ischar Sprawdza czy dana wejściowa jest zmienną typu char

isempty Sprawdza czy dana wejściowa jest zmienną pustą

isequal Sprawdza czy dane 2 macierze są sobie równe

isglobal Sprawdza czy dana wejściowa jest zmienną globalną

isinteger Sprawdza czy wszystkie elementy ziennej są typu integer

islogical Sprawdza czy dana wejściowa jest zmienną logiczną

isnan Znajduje elementy nieskończone (NaN)

isnumeric Sprawdza czy dana wejściowa jest zmienną numeryczną

isprime Znajduje elementy będące liczbami pierwszymi

isreal Sprawdza czy wszystkie elementy zmiennej są typu real

isscalar Sprawdza czy dana wejściowa jest skalarem

issorted Sprawdza czy dana wejściowa jest posortowana

issparse Sprawdza czy dana wejściowa jest macierzą rzadką

isvector Sprawdza czy dana wejściowa jest wektorem

Przykład:

if ~isreal(arg2),
 error(‘Zmienna musi być liczbą rzeczywistą’)
end

>> a = 1:20; % zmienna wejściowa
>> p = isprime(a); % wektor z 1 tam gdzie dana liczba jest pierwsza

 44

PRZETWARZANIE DŹWIĘKU

Przykładem sygnału 1 wymiarowego jest sygnał dźwiękowy.

Temat 96
Wczytanie pliku dźwiękowego – funkcja audioread, [y,Fs] = audioread(filename)

Do wczytania pliku dźwiękowego w formacie .wav wykorzystuje się funkcję audioread().

Przykład:

>> y = audioread(‘plik.wav’); % wczytanie pliku dźwiękowego
>> [y,Fs] = audioread(‘plik.wav’); % zwraca plik dźwiękowy y, częstość próbkowania Fs

Funkcja audioread czyta następujące formaty: wav, MP3, MPEG-4

UWAGA: Do wczytania ciągu danych niebędących plikiem dźwiękowym służy funkcja load.

Temat 97
Odtworzenie pliku dźwiękowego – funkcja audioplayer

Funkcją audioplayer można odtworzyć jako dźwięk dowolną zmienną będącą wektorem liczb

rzeczywistych.
player = audioplayer(Y,Fs,nBits)

Alternatywnie używamy funkcji play

Przykład:

>> audioplayer(y); % odtworzenie pliku dźwiękowego y

>> d = rand(1,20000);
>> audioplayer(d); % odtworzenie wektora losowego

>> t = (0:0.001:1)';
>> y = sin(2*pi*50*t) + 2*sin(2*pi*120*t); sygnał o 2 składowych o częstościach 50 i 120 Hz
>> audioplayer(y) % odtworzenie dźwięku y

Temat 98
Zarejestrowanie dźwięku – funkcja waudiorecorder

Do zarejestrowania dźwięku wykorzystuje się funkcję audiorecorder. Funkcja ta może być

wywoływane z kilkoma parametrami:

recorder = audiorecorder(Fs,nBits,NumChannels)

Przykład:

>> Fs = 44100 ;
>> nBits = 16 ;
>> nChannels = 2 ;
>> ID = -1; % default audio input device
>> recObj = audiorecorder(Fs,nBits,nChannels,ID);
>> recordblocking(recObj,5);

 45

Inne funkcje związane z dźwiękiem:

get Własności obiektu audiorecorder

getaudiodata

Pobiera zarejestrowane dane audio w postaci wektora danych

getplayer Tworzy obiekt związane z audioplayer

isrecording

Sprawdza czy trwa nagrywanie dzwieku

pause

Zatrzymanie odtwarzania lub rejestracji dźwięku

play Odtwarza dźwięk związany z obiektem audiorecorder

record Tworzy obiekt związany z audiorecorder

recordblocking

Uruchamia rejestracje dźwięku

resume

Wznawia odtwarzanie lub rejestrację dźwięku

set Ustawia własności obiektu audiorecorder

stop

Zatrzymuje odtwarzanie lub nagrywanie

Funkcja Obj=audioDeviceReader wyświetla informacje o karcie dźwiękowej, zaś

getAudioDevices (Obj) - wyświetla dodatkowe informacje (np. o sterownikach).

Temat 99
Zapisanie pliku dźwiękowego – funkcja audiowrite

Do zapisania zarejestrowanego lub zmienionego pliku dźwiękowego wykorzystuje się funkcję

audiowrite(‘nazwa pliku’,zmienna z danymi, częstość próbkowania,)

Przykład:

>> audiowrite(’muzyka.wav’,y,11025); % zapisanie zmiennej y z próbkowaniem 11025 Hz w
pliku muzyka.wav

Temat 100
Generowanie przebiegów czasowych

sawtooth przebieg trójkątny (periodyczny)

square przebieg prostokątny (periodyczny)

gauspuls przebieg sinusoidalny modyfikowany Gaussem (nieperiodyczny)

chirp Przebieg cosinusoidalny o zmiennym okresie

Temat 101
Fourierowska analiza próbek dźwiękowych – funkcja specgram

Funkcja specgram udostępniona jest w ramach Signal Processing Toolbox.

Zadaniem tej funkcji jest przeprowadzenie analizy częstotliwościowej sygnału zmiennego w

czasie. Wynikiem działania funkcji jest obraz, na którego osi poziomej mamy informacje o

czasie a na osi pionowej informacje o częstotliwościach.

Przykład:

>> specgram(y,512,2); % wyświetla

https://www.mathworks.com/help/matlab/ref/audiorecorder.get.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.getaudiodata.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.getplayer.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.isrecording.html
https://www.mathworks.com/help/matlab/ref/audioplayer.pause.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.play.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.record.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.recordblocking.html
https://www.mathworks.com/help/matlab/ref/audioplayer.resume.html
https://www.mathworks.com/help/matlab/ref/audiorecorder.set.html
https://www.mathworks.com/help/matlab/ref/audioplayer.stop.html

 46

FOURIEROWSKA ANALIZA DANYCH

Analiza widma funkcji otrzymywanej za pomocą transformaty Fouriera stanowi podstawię

większości algorytmów przetwarzania sygnałów. Matlab dostarcza wygodnych narzędzi do

takiej analizy.

Temat 102
Jedno wymiarowa transformata Fouriera

Definicja fft(x) gdzie x jest wektorem próbek sygnału. ifft(x) – oznacza odwrotną

transformatę Fouriera. Wszystkie pochodne funkcji transformaty Fouriera znajdują się w

grupie datafun.

UWAGA: Funkcja fft i jej pochodne najszybciej wykonywana jest dla danych o rozmiarze

będącym potęgą dwójki, np. 16, 32, 64, itd. Trochę wolniej trwają obliczenia dla danych o

rozmiarze będącym liczbą pierwszą. Obliczenia dla danych o innych rozmiarach są

zdecydowanie wolniejsze.

Temat 103
Inne pomocne funkcje

fftshift przesunięcie odpowiednich elementów składowych sygnału

real część rzeczywista liczby zespolonej

imag część urojona liczby zespolonej

conj sprzężenie zespolone

angle część fazowa sygnału

abs moduł sygnału

conv splot dwóch wektorów

deconv dekonvolucja dwóch wektorów

cov kowariancja

decimate przetworzenie wektora – rzadsze próbkowanie

interp przetworzenie wektora – gęstsze próbkowanie

unwrap Uciąglenie fazy

UWAGA: Aby obliczyć wartość natężenia sygnału należy skorzystać z następującego

przekształcenia:

>> nat = abs(sygnal).^2;

Przykład:

>> Fs = 1000; % częstotliwość próbkowania
>> T = 1/Fs; % czas próbkowania
>> L = 1000; % długość sygnału
>> t = (0:L-1)*T; % wektor czasu
% Generacja przykładowego sygnału będącego suma dwóch sinusoidalnych przebiegów o
% częstotliwości 50 Hz oraz 120 Hz
>> x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
>> y = x + 2*randn(size(t)); % Dodanie szumu
>> plot(Fs*t(1:50),y(1:50))

 47

>> title('Signal Corrupted with Zero-Mean Random Noise')
>> xlabel('time (milisekundy')
>> NFFT = 2^nextpow2(L); % Najbliższy wykładnik potęgi 2 dla wektora o długości L
>> Y = fft(y,NFFT)/L;
>>f = Fs/2*linspace(0,1,NFFT/2+1);
% Wykres amplitudy widma spektralnego.
>>plot(f,2*abs(Y(1:NFFT/2+1)))
>>title('Spektrum funkcji y(t)')
>>xlabel(‘Częstotliwość (Hz)')
>>ylabel('|Y(f)|')
>> % lub wykreśla widmo mocy
>> plot(f,(abs(Y(1:NFFT/2+1))).^2)

Temat 104
Dwu wymiarowa transformata Fouriera Transformata

Z przypadkiem dwu wymiarowej transformaty Fouriera najczęściej mamy do czynienia przy

przetwarzaniu zdjęć.

Dwu wymiarowa transformata Fouriera – fft2.

Funkcje odwrotne: ifft2, ifftshift.(przesuwa zerowa częstotliwość do środka macierzy)

Przykład:

Temat 105
Wielowymiarowa transformata Fouriera Transformata

Matlab oferuje możliwość obliczenia wielowymiarowej transformaty Fouriera przy

wykorzystaniu funkcji fftn.

Przykład:

>> s4 = rand(32,32,32,32); % stworzenie 4 wymiarowego zbioru danych
>> fs4 = fftshift(fftn(s4));

Temat 106
Filtry analogowe i cyfrowe

Signal Processing Toolbox udostępnia wiele funkcji związanych z przetwarzaniem sygnałów

za pomocą filtrów. Filtr analogowy, odpowiedź częstotliwościowa, realizowany jest przy

wykorzystaniu funkcji freqs(a, b, w). Gdzie a i b są współczynnikami wielomianów a w jest

wektorem z częstościami, dla których prowadzimy analizę.

Filtrację cyfrową, FIR (skończona odpowiedź impulsowe) lub IIR (nieskończona odpowiedź

impulsowa), wykonuje się za pomocą funkcji filter(b, a, x). Gdzie b i a są współczynnikami

odpowiednich wielomianów a w jest wektorem dyskretnych wartości sygnału na wejściu

filtra.

Przykład:

>> s = rand(128); % stworzenie 2 wymiarowego zbioru danych
>> fs = fftshift(fft2(s)); % 2 wymiarowa transformata Fouriera wraz z przesunięciem danych

 48

>> data = [1:0.2:4]';
>> filter(ones(1,5)/5,1,data); % filtr cyfrowy tyu FIR (uśredniający)

>> a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1,1);
>> freqs(b,a,w) % filtr analogowy

 49

FALKOWA ANALIZA DANYCH

W przypadku gdy analizowane są dane (przebiegi czasowe) nie mogą być uznane za

realizację procesu stacjonarnego losowego (tzn. ich własności statyczne nie zmieniają się w

czasie) jak w przypadku analizy Fouriera wówczas dogodnym narzędziem są tzw. falki

(wavelets). W matlabie dostępny jest toolbox (wavelts). Widmem mocy w tym przypadku jest

funkcją czasu tzn. że możemy określić w którym memencie zmienia się charakterystyka

częstotliwościowa badanego sygnału.

Transformata falkowa jest wykonywana za pośrednictwem funkcji cwt. Parametrami tej

funkcji mogą być: 'morse', 'amor', i 'bump' odpowiadającej metodzie Morse, Morlet oraz

Bump.

Przykład
>> Fs = 1000; % częstotliwość próbkowania
>> T = 1/Fs; % czas próbkowania
>> L = 1000; % długość sygnału
>> t = (0:L-1)*T; % wektor czasu
% Generacja przykładowego sygnału będącego suma dwóch sinusoidalnych przebiegów o
% częstotliwości 50 Hz oraz 120 Hz
>> x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);

>>cwt(x,’morse‘,Fs)

 50

Temat 107
Operacje wejścia wyjścia.

Do czytania plików video służy funkcja VideoReader, która tworzy obiekt typu video.

Analogicznie funkcja VideoWriter umożliwia zapisania pliku na dysku. Do uzyskania

informacji o pliku video stosuje się funkcję mmfileinfo.

Przykład:

>> v = VideoReader('myvideo.mp4');

Dodatkowe funkcje:

hasFrame

Sprawdza czy dostępna jest klatka video do wczytania z pliku

read

Czyta jedną lub więcej klatek filmu

readFrame

Czyta następna klatkę filmu

VideoReader.getFileFormats

Dostępne format video

Przykład:

>> v = VideoReader('myvideo.mp4');
>> frame = read(v,1); %Read only the last video frame.
>> frame = read(v,Inf); %Read frames 5 through 10.
>> frames = read(v,[5 10]); %Read from the 50th frame to the end of the video file.
>> frames = read(v,[50 Inf]);

Temat 108
Tworzenie animacji

Na podstawie wizualizacji danych w postaci wykresów możemy tworzyć animacje. Do tego

celu służy m. in. Funkcja getframe, która zapisuje pojedynczy wykres jako klatka animacji

Przykład:

>> Z = peaks;
>> for j = 1:40
>> X = sin(j*pi/10)*Z;
>> surf(X,Z)
>> drawnow
>> F(j) = getframe(gcf);
>> end
>> movie(F)

PRZETWARZANIE VIDEO

https://www.mathworks.com/help/matlab/ref/videoreader.hasframe.html
https://www.mathworks.com/help/matlab/ref/videoreader.read.html
https://www.mathworks.com/help/matlab/ref/videoreader.readframe.html
https://www.mathworks.com/help/matlab/ref/videoreader.getfileformats.html

 51

Funkcja movie uruchamia animację

movie(F,n,fps) gdzie F- object frame, n –ilość powtórzeń (-1 oznacza animacje uruchomiona

do przody I wstecznie), fps – prędkość w klatkach na sekundę

Pozostałe funkcję:

Im2frame - konwersja zdjęcia do obiektu frame

Fram2im - konwersja frame (jedna klatka) do zdjęcia

Getframe – zapisuje jako frame aktywne obiekt graficzny

Niektóre funkcje związane z przetwarzanie obrazów:

imread - czyta dane z pliku graficznego

imwrite – zapisuje dane do pliku graficznego

imfinfo - czyta parametry pliku graficznego

imhist – histogram obrazu

imresize – zmiana rozmiaru obrazu

imfilter – filtrowanie obrazu

imadjust – poprawa kontrastu obrazu

imshow – wizualizacja obrazu

rgb2gray – konwersja obrazu do obrazu w skali szarości

getpixelvalue – położenie kursora i wartości na obrazie

impixel – zwraca wartości RGB wskazane na obrazie za pomocą kursora

Dostęp do kamery (webcam)

webcamlist – informacje o zainstalowanych kamerach

cam=webcam – uchwyt do obiektu związanego z kamerą, własności obiektu cam mogą być

zmieniane (np. Resolution, Exposure: -2, Brightness: 100)

preview(cam) – przechwyt strumienia z kamery z wizualizacja w oknie matlaba

closePreview(cam) – zamknięcie strumienia danych z kamery

img = snapshot(cam); - przechwycenie jednego obrazu z kamery

 52

PODSTAWY STATYSTYKI

W MATLABIE

Temat 109
Funkcje Statystyczne

Dostęp do opisu funkcji statystycznych: help datafun

max

[a,b]=max(A)

max(A,dim)

Element maksymalny

a wartość maksymalna wektora A (lub kolejnych kolumn

macierzy) lub, b indeks wartości maksymalnej

wartość maksymalna względem wymiary dim macierzy A

min Element minimalny

mean

 mean(A,dim)

nanmean

Wartość średnia

wartość maksymalna względem wymiaru dim

ignoruje wartości NaN

median Wartość medialna

prctile Kwantyle

std Odchylenie standardowe

var Wariancja

sort Sortowanie kolumn wg różnych wartości

sortrows Sortowanie kolumn wg różnych wartości

sum Sumowanie elementów

prod Mnożenie elementów

hist Histogram

histcounts Histogram

cumsum Zwraca wektor kolejnych skumulowanych sum elementów

cumprod Zwraca wektor kolejnych skumulowanych iloczynów elementów

corrcoef Współczynniki korelacji

[R,P,RLO,RUP]=corrcoef(x,y,'alpha',0.01)

P jest macierzą współczynników p – prawdopodobieństwo

uzyskania współ. korelacji R jeśli rzeczywisty współczynnik

korelacji jest zerowy. Jeśli p jest Male (np. <0.05) wówczas

współ. korelacji jest wysoki

RLO dolny i górny RUP przedział współ. korelacji dla poziomu

istotności alpha (domyślna wartość 0.05)

cov Macierz kowariancji

skewness Skośność - 3 moment rozkładu

kurtosis Kurioza (4 moment rozkładu gęstości prawodpodobienstwa). Dla

rozkładu normalnego wynosi 3

geomean Średnia geometryczna

moment(X,n) Moment centralny n-tego rzędu

Okno statystyki- wybór z figure->tool->data statistics

Dopasowanie danych do funkcji gęstości prawdopodobieństwa:

Przykład:

pd = fitdist(x,'Normal')

Generowanie normalnego rozkładu prawdopodobieństwa:

y = normpdf(x,0,1);

http://www.mathworks.com/help/stats/skewness.html

 53

Generowanie dystrybuanty

cdf

Generowanie różnych rozkładów gęstości prawdopodobieństwa:

pd=makedist('Lognormal')

pd=makedist('Lognormal','mu',5,'sigma',2)

 54

Funkcje do konwersji układów współrzędnych

[theta,rho] = cart2pol(x,y)

[theta,rho,z] = cart2pol(x,y,z)

[x,y] = pol2cart(theta,rho)

[x,y,z] = pol2cart(theta,rho,z)

[x,y,z] = sph2cart(azimuth,elevation,r)

[azimuth,elevation,r] = cart2sph(x,y,z)

Funkcje specialne

https://nl.mathworks.com/help/matlab/special-functions-1.html?s_tid=CRUX_lftnav

INNE TEMATY

https://nl.mathworks.com/help/matlab/special-functions-1.html?s_tid=CRUX_lftnav

 55

STRUKTURY DANYCH

MATLABIE

Struktury w matlabie

Zmienne zgrupowane w bloku. Definiujemy je bezpośrednio za pomocą operatora”.” lub z

wykorzystaniem funkcji (setfield). Struktura może zawierać zmienne dowolnych typów

Przykład:

data.name=’Testfile’

data.time=12.00

data.value=[12.1 13];

data=setfield(data,’x’,1);

inny sposób definiowania struktury

data = struct(field1,value1,fieldN,valueN)

Inne funkcje:

setfield - definiuje nowa zmienna w ramach struktury

getfield – odczytuje wartość zmiennej w ramach struktury

fieldnames – nazwy zmiennych w ramach struktury

isfield – sprawa czy zmiana jest strukturą

orderfields – ustawia alfabetyczną kolejność zmiennych w ramach struktury

rmfield – usuwa zmienna ze struktury

struct2cell – konwersja struktury do zmiennej komórkowej

properties – własności struktury

cell2struct – konwersja zmienne komórkowej do struktury

Wykonywanie operacji na strukturach

A = structfun(@mean,S)

Uwaga: jeśli struktura zawiera zmienną znakową operacje numeryczne na nie wykonywane są

po konwersji do kody ASCII

Zmienne komórkowe (cell) mogą zawierać różne formaty danych np.:

C = {1,2,3;’text',rand(5,10,2),{11; 22; 33}}

cell2mat(C) – konwersja dla zmiennej komórkowej tego samego typu zmiennej podwójnej

precyzji

cell | cell2struct | cell2table | iscell | mat2cell | num2cell | struct2cell | table2cell

Zmienne tabelaryczne

LastName = {'Sanchez';'Johnson';'Li';'Diaz';'Brown'};

Age = [38;43;38;40;49];

Smoker = logical([1;0;1;0;1]);

Height = [71;69;64;67;64];

Weight = [176;163;131;133;119];

BloodPressure = [124 93; 109 77; 125 83; 117 75; 122 80];

https://ch.mathworks.com/help/matlab/ref/setfield.html
https://ch.mathworks.com/help/matlab/ref/getfield.html
https://ch.mathworks.com/help/matlab/ref/getfield.html
https://ch.mathworks.com/help/matlab/ref/isfield.html
https://ch.mathworks.com/help/matlab/ref/orderfields.html
https://ch.mathworks.com/help/matlab/ref/rmfield.html
https://ch.mathworks.com/help/matlab/ref/struct2cell.html
https://ch.mathworks.com/help/matlab/ref/properties.html
https://nl.mathworks.com/help/matlab/ref/cell.html
https://nl.mathworks.com/help/matlab/ref/cell2struct.html
https://nl.mathworks.com/help/matlab/ref/cell2table.html
https://nl.mathworks.com/help/matlab/ref/iscell.html
https://nl.mathworks.com/help/matlab/ref/mat2cell.html
https://nl.mathworks.com/help/matlab/ref/num2cell.html
https://nl.mathworks.com/help/matlab/ref/struct2cell.html
https://nl.mathworks.com/help/matlab/ref/table2cell.html

 56

T = table(LastName,Age,Smoker,Height,Weight,BloodPressure)

Dodanie własnosci obiektu

T.Properties.Description = 'Patient data, including body mass index (BMI) calculated using

Height and Weight';

Podsumowanie:

summary(T)

