Spatial representativeness of NO₂ monitoring stations with respect to Sentinel-5P satellite based estimates

Patryk Grzybowski, Institute of Geophysics, Faculty of Physics, University of Warsaw Krzysztof Markowicz, Institute of Geophysics, Faculty of Physics, University of Warsaw Jan Musiał, CloudFerro S.A.

Introduction Represenativeness – what is it? Methods: correlation, semivariograms and CSF Workflow – how it works? Results – how many stations are required... and if? Summary

Objectives

Establish what area of Poland is covered by spatial representative NO₂ surface concentrations measurement network

Find how many people live over the areas which are not covered by spatial representativeness measurements

Propose where new stations should be located in to cover Poland by a fully representative NO₂ measurement network

Represenativeness

But... how to define it?

We need to dicuss it...
United States Environmental Protection Agency (1978)

Representativeness is the extent to which a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain taken on a scale appropriate for a specific application (Nappo et al., 1982)

Measurement representativeness - an extent to which a measurement reflects the actual conditions being measured;

Point-to-point representativeness

– the possibility of applying
measurements taken at one
location for use at another
location

Point-to-volume representativeness that establishes a relationship between measurement taken at one location over horizontal surfaces

Represenativeness... in Europe

Stations should be divided according to three criteria:

- type of station (traffic, industrial, background)
- type of zone (urban, suburban, traffic)
- characterization of zone (residential, commercial, industrial, agricultural, natural and combinations of these)

(EEA, Larssen et al., 1999)

These are leads
Conditions over specific locations should
be evaluated

The following range of values as a radius of area was proposed:

- Traffic stations not applicable
- Industrial stations 10–100 m
- Background stations:
 - Urban background stations 100 m-1 km
 - Near-city background stations 1–5 km;
 - Regional stations 25–150 km (EEA, Larssen et al., 1999)

Represenativeness... in Europe

- Representativeness
 - a ±7.5 μg/m³ threshold for background rural areas
 - a ±2.5 μg/m³ threshold for background urban areas
 - concentration differs up to ±20 % of those recorded on the station (Report for EC, Spangl et al., 2007)

Maximum spatially representative (SR) distance from a measuring site:

- 100 km (2007) Report for EC, Spangl et al., 2007
- 200 km (2008) EC, 2008
- 100 km (2011) EC, 2011

Then...

Representativeness is the extent to which a set of measurements taken in a space-time domain reflects the actual conditions in the same or different space-time domain taken on a scale appropriate for a specific application (Nappo et al., 1982)

Point-to-volume representativeness - that establishes a relationship between measurement taken at one location over horizontal surfaces (Nappo et al., 1982)

Stations should be divided according to three criteria:

- type of station (traffic, industrial, background),
- type of zone (urban, suburban, traffic) (EEA, Larssen et al., 1999)

Maximum spatially representative (SR) distance from a measuring site – 100km (EC, 2011)

Methods

- Methods for assessment of spatial representativeness area
 - Global Moran I general verification
 - Method 1 Correlation of NO₂ surface mass concentration between stations with respect to distance
 - Method 2 Semivariograms
 - Method 3 Similarity threshold

Correlation of NO₂ surface mass concentration between stations with respect to distance

Calculate distance-based correlations: For each station, correlate NO₂ values with surrounding points in distance intervals (3.5–100 km) to see how correlation decreases with distance

Average results across stations/images: Combine correlations from all stations to get a representative distance—correlation curve for urban and rural areas.

Apply Fisher r-to-z transformation: Convert correlations to z-scores to statistically compare correlations at distance vs at zero distance.

Test significance ($z \ge 1.96$): Identify distances where correlation becomes significantly lower than the baseline, using the 95% confidence threshold.

Define SR area: The last distance with still-significant correlation is taken as the spatial relationship (SR) range.

Semivariograms

Compute semi-variances between station and surrounding points: Semi-variance measures how NO₂ differences grow with distance, allowing detection of spatial structure around each station.

Build semivariograms (semi-variance vs distance): Semivariograms show how spatial dependence changes with distance and reveal irregular SR shapes that simple correlation-distance methods cannot detect.

Identify nugget, sill, and range: Nugget shows small-scale variability or measurement noise; sill indicates total variance; range defines the distance beyond which NO₂ values are no longer spatially related (the SR boundary).

Fit multiple semivariogram models: Test exponential, Gaussian, circular, wave, spherical, and linear models, selecting the best-fitting one using R².

Extract SR range separately for urban and rural areas: Using the best-fit model, determine the range parameter for each environment to quantify the spatial relationship area.

Similarity threshold

Compare concentration time series using CSF: For each station, NO₂ time series at the station are compared with time series at every grid point within 100 km to assess similarity in temporal behaviour.

Compute percentage differences at each time step: For every t, calculate the relative difference between concentrations at the station and each surrounding grid point.

Select a threshold via sensitivity analysis: Test multiple percentage thresholds and choose the one that best balances representativeness—based on population share deviations—separately for urban and rural areas.

Calculate the frequency function fsite(x,y): For each grid point, compute how often the percentage difference stays below the chosen threshold; this frequency quantifies temporal similarity.

Define SR area based on similarity frequency: Points with **fsite(x,y) > 0.9** are considered part of the station's spatial representativeness (SR) area.

Determining urban and rural areas

- Urban areas
- Rural areas (non-urban areas)
- Based on Corine Land Cover

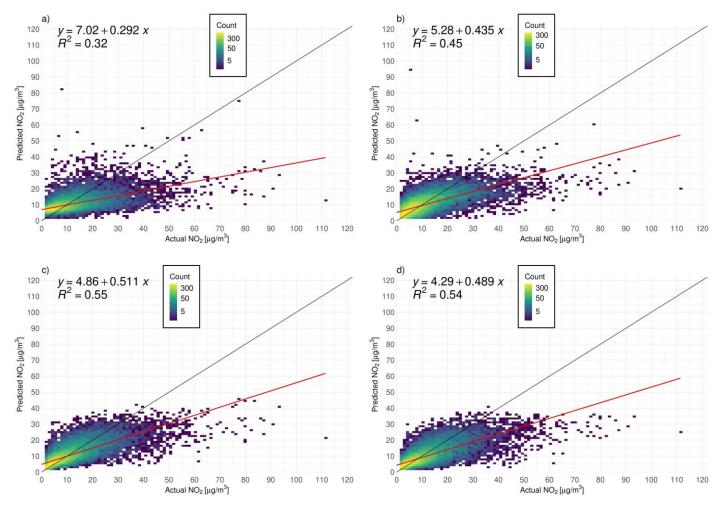
Excluding ,Transport' and ,Industrial' areas

Surface NO₂ mass concentration – conversion

model overview

Time period analysed: July 2018 – June 2021.

Data availability: Years 2019 and 2020.


Data processing: Values were linearly interpolated to

match the S-5P acquisition times.

Spatial resampling: Data were rescaled to a $3.5 \text{ km} \times 5.5$

km spatial resolution using interpolation.

Surface NO2 mass concentration estimations							
		MEAN	MIN	MAX	SD	1st Q	3rd Q
Testing dataset (n=27241)		10.07	0.01	111.41	8.89	4.40	13.12
Training dataset (n=22678)		10.44	0.01	100.59	8.61	4.44	12.93
nts		R2	MSE	RMSE	Bias [ug/m3]	MAE [ug/m3]	MAPE [%]
ē							
ısuren	LM - S5P	0.32	53.22	7.30	0.11	4.87	48.38
y measurem		0.32 0.45	53.22 43.11	7.30 6.57	0.11	4.87 4.24	48.38 42.08
Hourly measurements	S5P						

Grzybowski, P. T., Markowicz, K. M., & Musiał, J. P. (2023). Estimations of the ground-level NO_2 concentrations based on the sentinel-5P NO2 tropospheric column number density product. *Remote Sensing*, 15(2), 378.

Surface NO₂ mass concentration – conversion model overview

Linear regression with one undependable variable (LM)

NO₂ TVCD

Multiple linear regression with several undependable variables (MLM)

NO₂ TVCD

Air temperature (T)

Pressure (P)

Solar radiation (RADNET)

Wind speed (WS)

Planetary boundary layer height (PBLH)

Nightlights (NIGHTLIGHT)

Population (POP)

Road density (ROADS)

Elevation (ELEVATION),

Random forest with several undependable variables (RF)

NO₂ TVCD

Air temperature (T)

Pressure (P)

Solar radiation (RADNET)

Wind speed (WS)

Planetary boundary layer height (PBLH)

Nightlights (NIGHTLIGHT)

Population (POP)

Road density (ROADS)

Elevation (ELEVATION),

Circulation type (CT)

Radial kernel support vector machine with several undependable variables (SVM)

NO₂ TVCD

Air temperature (T)

Pressure (P)

Solar radiation (RADNET)

Wind speed (WS)

Planetary boundary layer height (PBLH)

Nightlights (NIGHTLIGHT)

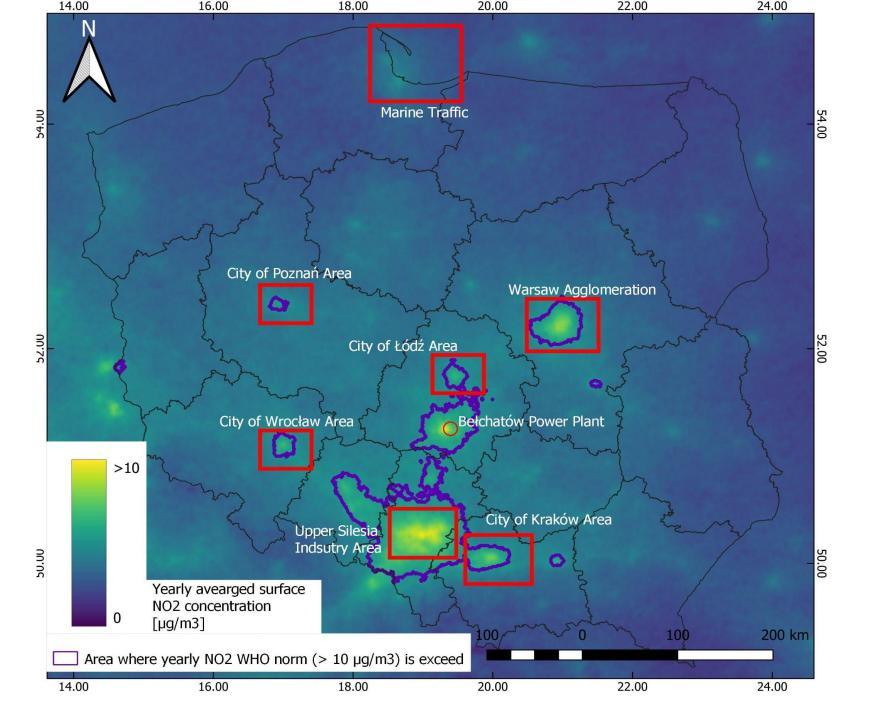
Population (POP)

Road density (ROADS)

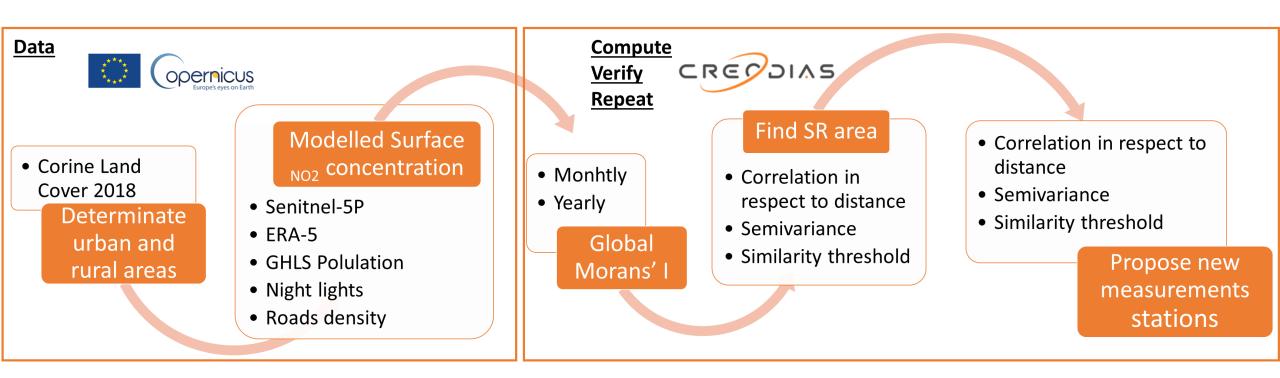
Elevation (ELEVATION)

Circulation type (CT)

Study area


Study area was limited to homogeneous areas, such as urban and rural areas, which were defined with use of Corine Land Cover data

"Transport" and "Industrial" areas have been excluded from the study


1000 points which included c.a. 170 real existing stations and c.a. 870 virtual stations.

Virtual rural stations were randomly placed at c.a. 400 sites, while virtual urban stations were randomly distributed across c.a. 470 sites.

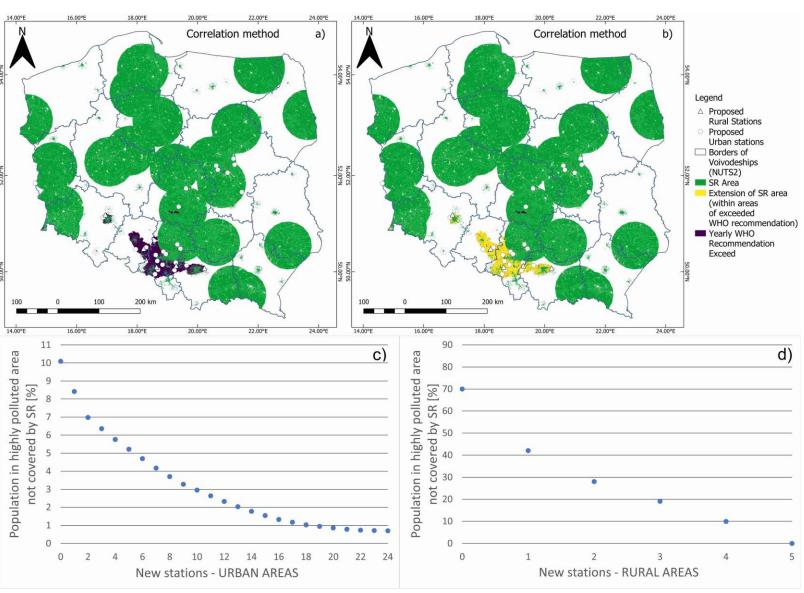
Areas where the annual surface NO₂ concentration equaled or exceeded the WHO annual recommendation of 10 μg/m₃

Workflow

Results

Global Moran I

- Global Moran's I (0.90–0.97) confirms very strong and significant spatial clustering of surface NO₂ across Poland
- Spatial autocorrelation remains high year-round, with a **slight decrease in winter** when pollution levels are elevated
- Lower value in May is linked to temperature variability affecting pollutant variabilities, but overall spatial dependence stays consistently strong


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Global Moran's I	0.90	0.92	0.95	0.96	0.90	0.95	0.97	0.94	0.95	0.95	0.91	0.92	0.94

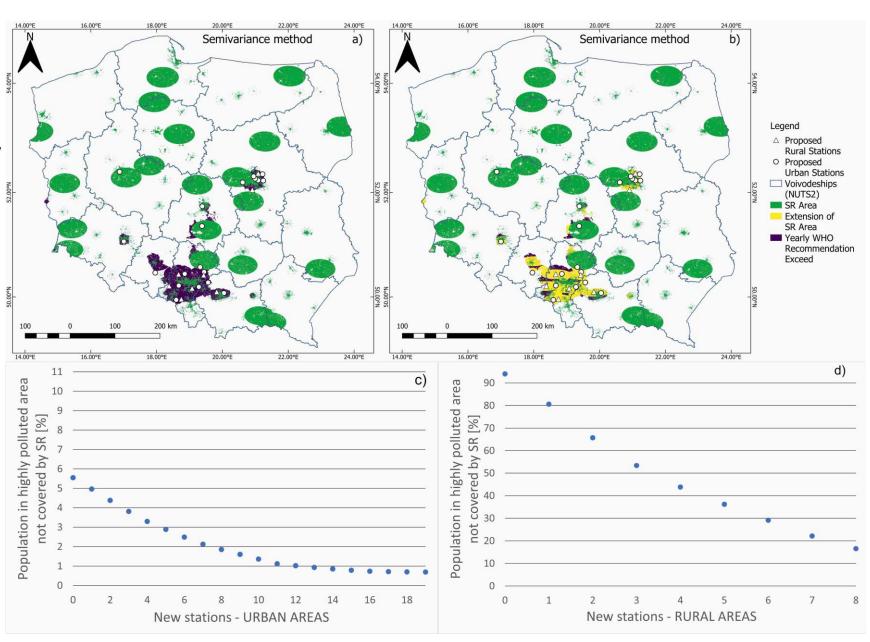
Correlation of NO₂ surface mass concentration between stations with respect to distance

SR Area buffer zone

Urban areas: 10.5 km Rural areas 56,0 km

10.09% of population lives outside SR area

Advantages and Limitations


Advantages	Limitations
Easiest to implement; fastest data preparation and coding	Produces highly generalized results
Lowest memory and computational requirements	Cannot capture anisotropy or directional effects
Very easy to interpret	Limited detail compared to pixel-based or variogram methods
Identifies similar SR locations as more advanced methods	

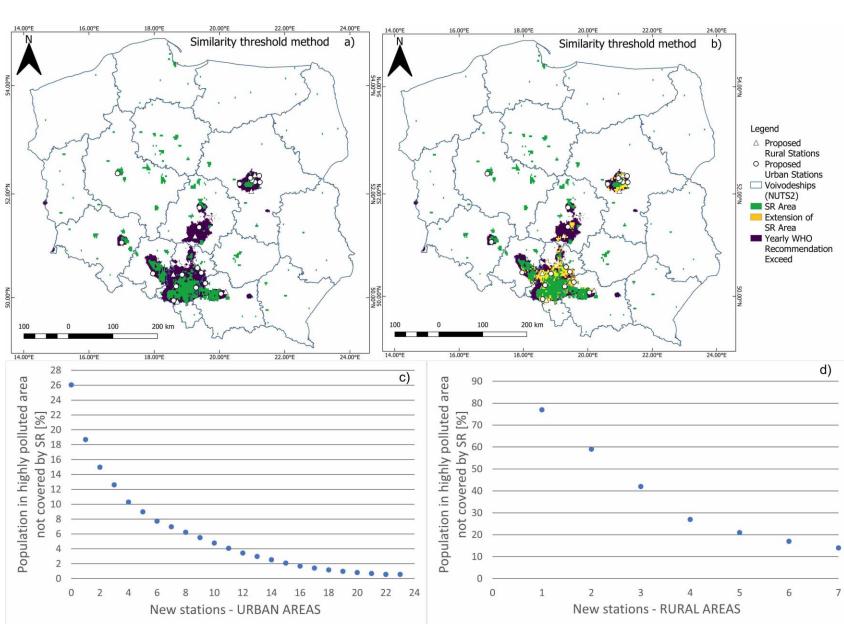
Semivariograms

SR Area buffer zone

Urban areas: 26 km latitudinally/21 km meridianaly Rural areas: 64 km latitudinally/41 km meridianaly

5.55% of population lives outside SR area

Advantages and Limitations


Advantages	Limitations
Captures anisotropy and wind-driven directional patterns	More complex to implement and interpret
Allows use of different variogram models tailored to local conditions	Requires careful model selection and fitting
Strong theoretical foundation in spatial autocorrelation research	More computationally demanding than correlation
Produces SR shapes that reflect ',more' real spatial structure	

Similarity threshold

Pixel based

Similiarity within 100 km buffer zone for each station

Advantages and Limitations

Advantages	Limitations
Produces the most detailed, pixel-level SR zones	Ineffective in low-NO₂ areas (relative percentage-based)
Highly sensitive to small spatial changes	Requires high spatial resolution (<1 km)
Strongly aligned with EU-level representativeness methodology	Most time-, power- and memory-intensive method
Ideal for complex urban environments with high variability	Computational load may limit large-domain applications

Proposed stations

Locations *proposed* by three methods

Jastrzębie-Zdrój (~90,000)

Jaworzno (~85,000)

Zawiercie (~50,000)

Bełchatów (~55,000)

Piaseczno (~45,000)

Eastern Warsaw (~5,000)

Kobyłka (~20,000)

Błonie (~12,000)

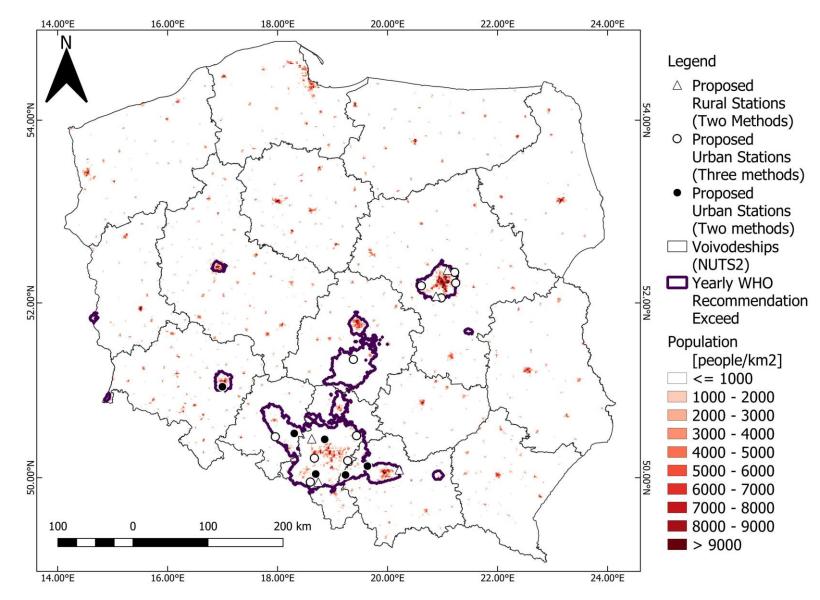
Knurów (~40,000)

Krapkowice (~15,000)

Locations *proposed* by two methods

Tarnowskie Góry (~60,000)

Žory (~60,000)


Myszków (~30,000)

Oświęcim (~40,000)

Olkusz (~35,000)

Strzelce Opolskie (~20,000)

Southern Wrocław (~20,000)

Advantages and Limitations

Advantages	Limitations
SR areas verified using continuous spatial data	Reliance on Sentinel-5P optical data limited by cloud cover
Consistent proposed station locations across methods	Seasonal gaps: autumn ~24%, winter ~18% usable data
New station locations identified for improved network design	Synthetic filling may reduce model accuracy and decrease the realism of the underlying atmospheric conditions

Summary

- NO₂ air pollution is a highly spatially auto-correlated phenomenon
- According to correlation approach, semivariograms and similarity threshold, the results revealed that c.a. 88 %, c.a. 94 % and 74 % of urban population where yearly NO₂ recommendation was exceeded, is covered by representative NO₂ measurements network
- According to correlation approach, semivariograms and similarity threshold, the results revealed that c.a. 30 %, c.a. 10 % and 10 % of rural population where yearly NO₂ recommendation was exceeded, is covered by representative NO₂ measurements network
- Results based on the semivariogram approach indicate that the spatial representativeness is influenced by anisotropy. **The SR area is**much larger in the latitudinal dimension than in the longitudinal dimension, for both urban and rural areas
- Anisotropy influences more significantly on homogeneous areas, such as agriculture or forests
- The similarity threshold method is particularly suited for highly polluted areas
- 10 urban and no rural stations were proposed in the same location by all methods
- 17 urban and 5 rural stations were proposed in the same location by at least two methods

Thank you!

Patryk Grzybowski pgrzybowski@cloudferro.com