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Motivation

Clouds are very important objects present in the atmosphere. Their
representation is regarded as the largest source of uncertainty in
weather and climate models.

This study is concerned with marine cumulus clouds. They are
convective phenomena, and their size (both vertical and horizontal) is
of the order of hundreds of meters.
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Cloud processes

Figure: A selection of cloud processes
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Cloud turbulence

Turbulent mixing affects cloud dynamics, and consequently, larger
scale processes. Therefore studying cloud turbulence might give a
solution to better numerical schemes.

The starting point in the study of turbulence in terms of its statistical
properties is the theory of homogeneous and isotropic turbulence
(HIT) developed by Kolmogorov.

A useful concept for understanding the dynamics of a turbulent flow is
the concept of an energy cascade.
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Energy cascade

Figure: A schematic of an energy cascade
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ε

In this case ε is regarded as an energy flux going from the largest to
the smallest scales. Several methods of obtaining ε from
lower-resolution data exist, e.g.:

E(κ) = CK ε
2/3κ−5/3, (1)

D11(r) = C11ε
2/3r2/3. (2)

Also, ε is connected to other quantities via Taylor’s relation:

ε = Cε
u′3/2

L
, (3)
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Deviations from HIT

Two deviations from the HIT theory are considered in this work:
1 Non-equilibrium turbulence
2 Anisotropic turbulence
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Non-equilibrium turbulence

Figure: A deviation from the -5/3 law
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Non-equilibrium turbulence

E(κ) = CK ε
2/3κ−5/3 E(κ, t) = E(κ, t) + Ẽ(κ, t) (4)

↓ some derivation ↓

k̃
k
∼ ε̇

ε
(5)

↓ some more derivation ↓

Cε

Cε

≈
(

1 +
k̃
k

)
=

(
Reλ0

Reλ

)15/14

→ Cε ≈
1

Reλ
(6)

The derivation was done in Bos 2017.
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Anisotropic turbulence - approach

The study of anisotropy includes the analysis of the ratio of magnitude
of fluctuations in different directions e.g.:

Au =

√
2⟨w ′2⟩

⟨u′2⟩+ ⟨v ′2⟩
, (7)

as well as the ratio of TKE dissipation rates:

Aε =
2εW

εU + εV
. (8)
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Anisotropic turbulence - approach

Another way to study anisotropy is the analysis of the invariants of the
normalised anisotropic tensor :

aij =
u′

i u
′
j

2k
−

δij

3
. (9)

aij → diagonalization → [λ1, λ2, λ3]

I = λ1 + λ2 + λ3 = 0

II = λ2
1 + λ1λ2 + λ2

2

III = −λ1λ2(λ1 + λ2)
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Anisotropic turbulence

Figure: Turbulence triangle
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A different approach

In this work, the clouds and cloud turbulence were also analysed
based on a method that stems from the analysis of dynamical systems,
namely Recurrence Plot and Recurrence Quantification Analysis.
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Recurrence plot - definition

Let’s define a vector x⃗ which represents a state of a system.

We can define a we define a recurrence matrix:

Ri,j = Θ(ϵ− ||x⃗i − x⃗j ||),

where ϵ is called a recurrence threshold, x⃗i is a vector at time i , and
Θ(·) is the Heavyside function, and || · || is a norm (in this case an L-2
norm).
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Recurrence plot - example

Figure: Lorenz system
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Recurrence plot - example

Figure: Recurrence Plot of the Lorenz system
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Observation of RPs

1 Diagonal lines (parallel)
-> the evolution of states is similar at different times, the process
could be deterministic

2 White bands
-> nonstationarity, some states are rare or far from the normal,
transitions may have occurred

3 Periodic patterns
-> cyclicities in the process
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Observation of RPs

1 Vertical and horizontal lines/clusters
-> some states do not change or change slowly for some time,
indication for laminar states

2 Single isolated points
-> heavy fluctuation in the process

3 Homogeneity:
-> the process is stationary

4 Fading to the upper left and lower right corners:
-> nonstationarity; the process contains a trend or drift
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RQA

Recurrence quantification analysis:
1 Recurrence Rate (RR)

RR =
ΣN

i,j=1Ri,j

N2

2 Determinism (DET)

DET =
ΣN

l=lmin
lP(l)

ΣN
l=1lP(l)

3 Laminarity (LAM)

LAM =
ΣN

v=vmin
vP(v)

ΣN
v=1vP(v)
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RQA

Recurrence quantification analysis:
1 Average diagonal line length (L)

L =
ΣN

l=lmin
lP(l)

ΣN
l=lmin

P(l)

2 Trapping time (TT)

TT =
ΣN

v=vmin
vP(v)

ΣN
v=vmin

P(v)

3 Ratio (RATIO)

RATIO =
DET
RR
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RQA - examples

Table: Values of selected quantities in the RQA for different systems

Quant. RN Lorenz Period Brown
lmin, vmin 2 10 52 20
RR 0,191 0,079 0,110 0,217
DET 0,346 0,894 0,398 0,581
LAM 0,362 0,403 0 0,702
LL 2,23 30,53 186,54 37,07
TT 2,30 12,30 0 41,54
RATIO 1,81 11,21 3,66 2,68
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Data
The data used in this study come from the measurements done by the
Twin-Otter aircraft during EUREC4A campaign.

Figure: A schematic showing the overview of the campaign
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Data

Figure: A cloud
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Data - problems

During the analysis, several problems with the data were identified.

Figure: An image showing example problems with the data
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Data - conclusion

Table: Metadata. No – number of periods, ΣTo – length of periods in minutes,
Nc – number of clouds.

Flight Date No ΣTo [min] Nc

330 24.01 8 58 22

331 24.01 3 20 0

334 28.01 5 35 4

336 30.01 5 25 4

341 5.02 1 8 0

342 6.02 4 21 0

343 7.02 2 22 0

344 7.02 1 10 0

349 11.02 5 38 19
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Data - example

Figure: An example time series showing three components of wind velocity,
temperature, and liquid water content.
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Input parameters

First, in order to calculate the fluctuating part of velocity (u′) via
Reynolds decomposition, we need to calculate the mean over a certain
window, τd .

We also need to choose a window over which the statistics (< · >,ε,
etc.) are calculated, τa. Ideally, this window should be several times
larger than τd .
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Results - turbulence

Figure: A time series of basic turbulence quantities.
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Results - turbulence

Figure: A time series of other turbulence quantities.
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Results - nonequilibrium turbulence

Figure: A plot of Cε vs Reλ.
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Results - anisotropic turbulence

Figure: Time series of Av .
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Time-dependent RQA

In this analysis, a time-dependent RQA was performed. That is, a
matrix based only on a portion of the data was constructed, and then
the standard RQA was performed. This way, time series of the
aforementioned parameters were obtained.

In this case, a following vector was constructed:

x⃗ = [T ,w ′, k ]. (10)
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Results - RQA

Figure: A time series of selected quantities in the RQA.
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Results - RQA

Figure: A time series of selected quantities in the RQA.
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Results

Figure: An example time series with the LAM mask denoted by orange
rectangles
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Results

Figure: An example time series of turbulence quantities with the LAM mask
denoted by orange rectangles
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Results

Figure: Values of different quantities averaged with respect to 3 masks
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Results

Figure: Histograms of ε for different directions and masks
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Conclusion

1 An analysis of turbulence in and around cumulus clouds was
performed.

2 Departure from HIT was observed. In my opinion, we need to look
at cloud turbulence in terms of extended theories.

3 An RQA was done for the airborne time series.
4 A method to distinguish turbulent and non-turbulent segments was

proposed. It has its advantages.
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Outlook

This framework should be tested against a bigger dataset, but we are
still waiting for the data.

A more in-depth analysis of parameters was performed for the PhD,
but there are still possibilities to do more things with the RQA.
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Literature

The literature and is available at BIP UW > DOKTORATY > Stanisław
Król, or upon request.

Thank you for your attention.
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