University of Warsaw-April 11, 2025

Interface-Resolved Simulation of Droplet Evaporation

METIN MURADOGLU

Department of Mechanical Engineering, Koc University, Istanbul, Turkey. E-mail: mmuradoglu@ku.edu.tr

Outline

- Surface Phenomena and Multiphase Flows
- Front-Tracking Method
- Droplet Evaporation and Burning
 - Numerical Treatment of Phase Change
 - Validation
 - Droplet evaporation and burning
 - Droplet evaporation in convective environment
 - Performance evaluation of low-order models
- Viscoelasticity & Surfactant
- Conclusions

Surface Tension and Interfacial Phenomena

- The 'unhappy' molecules cause **tension** at the interface
- Tries to minimize the surface area
- Becomes significant as size gets smaller

 $\frac{\text{Surface Force}}{\text{Volume Force}} \sim \frac{\text{Area}}{\text{Volume}} \sim \frac{1}{R} \to \infty \quad \text{as} \quad R \to 0$

• Responsible for a wide range of natural phenomena

Examples

Multiphase Systems

Flow systems composed of immiscible phases and fluids, separated by a sharp interface moving and deforming with flow.

(b)

Multiphase Flows: Particle-Resolved Simulations

Common Features:

- Several phases flow together
- Phases are separated by a moving and deforming interface
- The physics is well described by the continuum theories
- Properties change discontinuously across the interface
- Fluids may be Newtonian or Non-Newtonian
- Fluids are assumed to be incompressible
- Full flow equations are solved numerically inside and outside the drop

Mean Free Path (Deen, 1998) Liquids ~ 0.3 nm Gases ~ 100 nm

Mathematical Formulation

Flow equations: One-Field Formulation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \mu (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) + \boldsymbol{g} \Delta \rho + \int_A \left(\sigma(\Gamma) \kappa \boldsymbol{n} + \nabla_s \sigma(\Gamma) \right) \delta \left(\boldsymbol{x} - \boldsymbol{x}_f \right) dA$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Body force due to surface tension

Front-Tracking Method

 Flow equations are solved on the Eulerian grid

• The Lagrangian grid used to track the interface and is dynamically restructured, i.e., small elements are deleted and large elements are split.

Unverdi & Tryggvason, JCP, (1992) Tryggvason et al. JCP, (2001)

Thickness of interface ~ Mean free path (λ)

Extending to 3D

• The elements have pointers to the points and the adjacent elements

Validation: Buoyancy-Driven Rising Drops in a Constricted Channel

Hemmat & Borhan (1996) reported critical non-dimensional drop size as 0.85 which compares well with our value of 0.87

Power of Computations

(Left)The drop shapes, the velocity field and pressure contours in the vicinity of the DEGG12, κ =0.92 drop. (Right) Comparison with the experimental data.

Modelling Multiphysics Effects

Phase Change

M. Irfan and **M. Muradoglu**, "A Front Tracking Method for Direct Numerical Simulation of Evaporation Process in A Multiphase System", *Journal of Computational Physics*, **337**:132-153(2017)

M. Irfan and **M. Muradoglu**, "A front-tracking method for particle-resolved simulation of evaporation and combustion of a fuel droplet", *Computers&Fluids*, **174**:283-299 (2018)

Droplet Evaporation

Spray Combustion

http://www.rocketlab.t.utokyo.ac.jp/member/inoue/chih ilab_eng.html

Captar et al. (2024)

Pattern Formation

5.8e+02

Coffee Ring Effect, Deegan et al., Nature (1997)

Governing Equations

Continuity Equation

$$\nabla \cdot \boldsymbol{u} = \frac{1}{h_{lg}} \left(\frac{1}{\rho_g} - \frac{1}{\rho_l} \right) \int_A \dot{q} \,\delta(\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Momentum Equation

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \mu (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) + \boldsymbol{g} \Delta \rho + \int_A \sigma \kappa \boldsymbol{n} \delta (\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Energy Equation

$$\frac{\partial \rho c_p T}{\partial t} + \nabla \cdot \left(\rho c_p \boldsymbol{u} T\right) = \nabla \cdot k \nabla T - \left[1 - \left(c_{pg} - c_{pl}\right) \frac{T_{sat}}{h_{lg}}\right] \int_A \dot{q} \delta(\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Species Mass Fraction

$$\frac{\partial \rho Y_{\alpha}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} Y_{\alpha}) = \nabla \cdot \rho D \nabla Y_{\alpha} + \dot{S}_{\alpha}(\boldsymbol{Y}, T), \qquad \alpha = 1, 2, \dots, n_s$$

Governing Equations

Continuity Equation

$$\nabla \cdot \boldsymbol{u} = \frac{1}{h_{lg}} \left(\frac{1}{\rho_g} - \frac{1}{\rho_l} \right) \int_A \dot{q} \,\delta(\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Momentum Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \mu (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}) + \boldsymbol{g} \Delta \rho + \int_A (\sigma(\Gamma) \kappa \boldsymbol{n} + \nabla_s \sigma(\Gamma)) \delta(\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Energy Equation

$$\frac{\partial \rho c_p T}{\partial t} + \nabla \cdot \left(\rho c_p \boldsymbol{u} T\right) = \nabla \cdot k \nabla T - \left[1 - \left(c_{pg} - c_{pl}\right) \frac{T_{sat}}{h_{lg}}\right] \int_A \dot{q} \delta(\boldsymbol{x} - \boldsymbol{x}_f) dA$$

Species Mass Fraction

$$\frac{\partial \rho Y_{\alpha}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} Y_{\alpha}) = \nabla \cdot \rho D \nabla Y_{\alpha} + \dot{S}_{\alpha}(\boldsymbol{Y}, \boldsymbol{T}), \qquad \alpha = 1, 2, \dots, n_s$$

M. Irfan and M. Muradoglu, JCP, (2017)

Temperature Gradient Driven Phase Change

Continuity Equation:

Species Gradient Driven Phase Change

Species mass flux at interface

d^2 -Law – Validation

Moving Droplet – Grid Convergence

It is also only 1st order for this case!

Moving Droplet Evaporation: No Reaction

 $Eo = 10, M = 10^{-4}, Sc = 1, \gamma = 5, \zeta = 20, \text{Grid}: 192 \times 1536$

Single Droplet

Two-Interacting Droplets

Chemical Reaction

Consider a single-step chemical mechanism for simplicity (generalization is straightforward)

$$F + aO_x \rightarrow bPr$$

Rate of fuel consumption is given by

$$\frac{d[X_F]}{dt} = -k_G(T)[X_F]^n \left[X_{O_X}\right]^m$$

 $k_G(T) = Aexp(-E_A/RT)$

Reference: Turns S. An introduction to combustion: concepts and applications. New York: McGraw-Hill; 2000.

F = Fuel; O_x = Oxidizer; X = Mass fraction; k_G = Global rate coefficient; n, m = Reaction order; A = Pre – exponential factor; E_A = Activation energy; R = Universal gas constant

Example: A general Diesel fuel (e.g., n-heptane)

$$C_x H_y + a(O_2 + 3.76N_2) \rightarrow xCO_2 + (y/2)H_2O + 3.76aN_2$$

a = x + y/4

ODE Solver: Chemkin-II (Kee R., Rupley F., Miller J., Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. 1989.)

Chemical Kinetics: CHEMKIN

n-Heptane Droplet Combustion

A single-step n-heptane-air chemistry:

 $C_7 H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$ $T_d = 371.6K, T_g = 500K$

Domain: $5d_0 \times 10d_0$

Ambient Air: 79% N₂ & 21%O₂

Ignition: By temperature heat source

n-Heptane Droplet Combustion: Stationary Case

 $T_{d,o} = 371.6 \text{ K}, T_g = 500 \text{ K}, p = 10 \text{ atm}$ Domain : (5d_o, 10d_o) where d_o = 0.4 mm Ambient Air : 79% N₂ & 21% O₂ (by vol.) Ignition : By temporary heat source

Reduced Chemistry: 25 Species & 26 Reactions (Maroteaux and Neol)

Moving and Burning Droplet

Motivation:

- Distributing source term results in only 1st order accuracy in space
- Extreme grid resolution is required to resolve thin mass boundary layer especially at high Peclet numbers
- Thus, a second order method is highly desirable
- Approach:
 - Combine the front-tracking method with a sharp-interface immersed boundary (IBM) method of Mittal et al. (2008)
 - Also use this methodology to treat mass/heat transfer from solid particles immersed in fluid

F. Salimnezhad, H. Turkeri, I. Gokalp and **M. Muradoglu**, "A hybrid immersed-boundary/front-tracking method for interface-resolved simulation of droplet evaporation", *Computers & Fluids*, **291** (2025)

Sharp-Interface Immersed Bound

The dispersed phase could be fluid or solid or both!

 A vandermonde system is formed and solved to determine values in the ghost cells such that the boundary conditions are satisfied

$$[V] \{A\} = \{Y\}$$

$$\begin{bmatrix} V \end{bmatrix} = \begin{bmatrix} r_1 z_1 & r_1 & z_1 & 1 \\ r_2 z_2 & r_2 & z_2 & 1 \\ r_3 z_3 & r_3 & z_3 & 1 \\ r_4 z_4 & r_4 & z_4 & 1 \end{bmatrix}; \ \{A\} = \begin{cases} a_1 \\ a_2 \\ a_3 \\ a_4 \end{cases}; \ \{Y\} = \begin{cases} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{cases}$$

Validation-Falling droplet under gravity

Validation-Mass transfer from a solid sphere

Left: flow velocity & streamlines Right: mass fraction

Validation: Wet-bulb temperature

Droplet evaporation under convection

 Following Rusche. (2003), moving reference frame (MRF) is used to keep droplet fixed in computational domain:

$$\rho \frac{\partial \boldsymbol{u}_{rel}}{\partial t} + \rho \left[\nabla \cdot (\boldsymbol{u}_{rel} \boldsymbol{u}_{rel}) - \boldsymbol{u}_{rel} \left(\nabla \cdot \boldsymbol{u}_{rel} \right) \right] = -\nabla p + \rho \left(\boldsymbol{a}_{MRF} \right) + \nabla \cdot \mu \left(\nabla \boldsymbol{u}_{rel} + \nabla \boldsymbol{u}_{rel}^T \right) + \int_A \sigma \kappa \boldsymbol{n} \delta \left(\boldsymbol{x} - \boldsymbol{x}_{\Gamma} \right) dA,$$

where

 a_{MRF} = acceleration computed at every time step u_{rel} = relative velocity

• The relevant flow parameters:

$$\begin{aligned} Re &= \frac{\rho_g U_\infty d_0}{\mu_g}, \quad We = \frac{\rho_g U_\infty^{-2} d_0}{\sigma}, \quad Sc = \frac{\mu_g}{\rho_g D_{vg}}, \\ Sh &= \frac{-d_0}{Y_\Gamma - Y_\infty} \left(\frac{\partial Y}{\partial n}\right), \quad B_M = \frac{Y_\Gamma - Y_\infty}{1 - Y_\Gamma}. \end{aligned}$$

• Simulations are performed for $0 < Re \le 200$, $0 \le We \le 9$, $\le B_M \le 15$

Low-order models

• The *classical* model (Spalding 1953, Sazhin 2017):

$$Sh = Sh_0 \frac{\ln(1+B_M)}{B_M}$$

where Sh_0 is usually obtained from *Ranz-Marshall* correlation (Ranz 1952)

$$Sh_0 = 2 + 0.552 Re^{1/2} Sc^{1/3}$$

The Abramzon-Sirignano model (Abramzon & Sirignano 1989):

$$Sh = \left(2 + \frac{Sh_0 - 2}{F_M}\right) \frac{\ln(1 + B_M)}{B_M}$$
$$F_M = (1 + B_M)^{0.7} \frac{\ln(1 + B_M)}{B_M}$$

where the droplet is approximated to be collection of wedges and the *Falkner–Skan* boundary layer solution is used (*Sirignano 2010*).

The correction factor, F_M , accounts for BL thickening due to Stefan flow

Second order accurate in space!

Effects of Stefan Flow

 $Re = 100, We = 0.65, B_M = 10, t^* = 10.$

Stefan flow

- thickens the boundary layer
- promotes early flow separation
- enlarges the recirculation zone

Effects of Reynolds Number

$$We = 0.65, B_M = 5$$

 The Abramzon-Sirignano model outperforms the classical model

Effects of Reynolds Number

$$We = 0.65, B_M = 5$$

The classical model overpredicts
 evaporation rate

10

40

 The Abramzon-Sirignano model outperforms the classical model

Nearly Spherical Droplet: Effects of Reynolds Number

We = 0.65

- The Abramzon-Sirignano model performs well on the leading edge
- But significantly underpredicts on the trailing edge where boundary layer seperates

• The Abramzon-Sirignano model outperforms the classical model

• The Abramzon-Sirignano model outperforms the classical model

• The low order models perform poorly in the after BL separation

Figure 14: Mass fraction at designated radial lines in the wake of evaporating droplet (Re = 20)

Nearly Spherical Droplet: Effects of Stefan Flow

Effects of Deformation (We)

Evaporation rate strongly correlates with surface area

Evaporation rate strongly correlates with surface area

Conclusions

- The front-tracking method is presented for interface-resolved simulations of droplet evaporation
 - Distributing evaporative flux near droplet is computationally inexpensive but results in 1st order spatial accuracy
 - Hybrid method is more expensive but results in 2nd order spatial accuracy
 - Both methods are rigorously validated
- Extensive simulations are performed to examine droplet evaporation is convective environments
 - A thin mass boundary layer (BL) forms at the interface
 - Stefan flow thickens BL and results in early separation and larger recirculation zone, greatly influencing evaporation rate
 - The classical model outperforms Abramzon-Sirignano model at very low Re
 - But, Abramzon-Sirignano model performs much better for Re of practical interest
 - Droplet deformation greatly affects evaporation rate and must be incorporated in low order models. Evaporation rate correlates well with the deformation rate
- Future works:
 - Extension to full 3D (in progress)
 - Investigation of effects of turbulence
 - Investigation of effects of combustion

Modelling Multiphysics Effects

Viscoelasticity & Surfactant

Z, Ahmed, D. Izbassarov, J. Lu, G. Tryggvason, **M. Muradoglu**, O. Tammisola, "Effects of soluble surfactant on lateral migration of a bubble in a pressure driven channel flow ", International Journal of Multiphase Flow 126, 103251 (2020).

Z. Ahmed, D. Izbassarov, P. Costa, M. Muradoglu, O. Tammisola, "Turbulent bubbly channel flows: Effects of soluble surfactant and viscoelasticity", *Computers & Fluids* 212, 104717 (2021)

D. Izbassarov, Z. Ahmed, P. Costa, V. Vuorinen, O. Tammisola, **M. Muradoglu**, "Polymer drag reduction in surfactantcontaminated turbulent bubbly channel flows", *Physical Review Fluids* 6 (10), 104302 (2021)

H.U. Naseer, Z. Ahmed, D. Izbassarov, **M. Muradoglu**, "Dynamics and interactions of parallel bubbles rising in a viscoelastic fluid under buoyancy", *Journal of Non-Newtonian Fluid Mechanics* 313, 105000 (2023)

H.U. Naseer, D. Izbassarov, Z. Ahmed, **M. Muradoglu**, "Lateral migration of a deformable fluid particle in a square channel flow of viscoelastic fluid", *Journal of Fluid Mechanics* 996, A31 (2024)

H.U. Naseer, D. Izbassarov, M.E. Rosti, **M. Muradoglu**, "Bubbles-induced transition to elasto-inertial turbulence", *Journal of Fluid Mechanics (submitted) (2025)* arXiv preprint arXiv:2503.03943

Viscoelastic/Elastoviscoplastic Fluids

Virk et al. Trans. ASME (1970)

Surfactant

- Exists as impurities or added deliberately to the system
- Tend to collect at the interface and reduce surface tension
- Non-uniform surface tension induces Marangoni stresses
- A minute amount may change structure of a bubbly flow completely
- A challenging task for simulations

Mathematical Formulation

• Incompressible Flow Equations: One-field formulation

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p - \frac{dP_0}{d\nu} \mathbf{j} + (\rho - \rho_{avg}) \mathbf{g} + \nabla \cdot \mu_s (\nabla \mathbf{u} + \nabla \mathbf{u}^T) + \nabla \cdot \mathbf{\tau} + \int_A [\sigma(\Gamma)\kappa \mathbf{n} + \nabla_s \sigma(\Gamma)] \delta(\mathbf{x} - \mathbf{x}_f) dA \qquad \text{viscoelastic stresses} \nabla \cdot \mathbf{u} = 0$$
• Langmuir Equation of state

$$\sigma(\Gamma) = \sigma_{\rm s} \left[\max(\epsilon_{\sigma}, 1 + \beta_{\rm s} \ln(1 - \frac{1}{\Gamma_{\infty}})) \right]$$

• Surfactant concentration at interface (Stone 1990) $\frac{D\Gamma A}{Dt} = AD_s \nabla_s^2 \Gamma + \dot{S_{\Gamma}} \qquad \dot{S_{\Gamma}} = k_a C_s (\Gamma_{\infty} - \Gamma) - k_d \Gamma$

- Bulk surfactant concentration $\frac{\partial C}{\partial t} + \nabla \cdot (C\mathbf{u}) = \nabla \cdot (D_{co}\nabla C) + S_{c}^{\cdot}$
- Viscoelasticity: FENE-P Model (Bird et al. 1980; Izbassarov and Muradoglu, 2015)

$$\frac{\partial A}{\partial t} + \nabla \cdot (\boldsymbol{u}\boldsymbol{A}) - (\nabla \boldsymbol{u})^T \cdot \boldsymbol{A} - \boldsymbol{A} \cdot \nabla \boldsymbol{u} = -\frac{1}{\lambda} \left(\frac{A}{1 - \operatorname{trace}(\boldsymbol{A})/L^2} - \boldsymbol{I} \right)$$

$$\boldsymbol{\tau} = \frac{\mu_p}{\lambda} \Big(\frac{A}{1 - \operatorname{trace}(A)/L^2} - \boldsymbol{I} \Big)$$

Effects of surfactants (Takagi et al. 2011)

Clean water

42 ppm 3-pentanol

168 ppm 3-pentanol

2 ppm TritonX-100

- Clean water case: Bubbles coalesce and become deformable
- 42 ppm 3-pentanol (little surfactant): Bubbles do not coalesce and tend to collect near the wall
- 168 ppm 3-pentanol: Bubbles are distributed more uniformly across the channel
- Only 2 ppm of TritonX-100 surfactant produce same results as 168 ppm of 3pentanol surfactant type

Effects of surfactants: Single Bubble (Ahmed et al. 2020)

52

Effects of surfactants: Newtonian Bubbly Flow ($Re_{\tau} = 180$)

- Even a tiny amount of TritonX-100 alters the structure of the turbulent bubbly flow dramatically
- Qualitatively in good agreement with the experimental observations of Takagi et al. 2008

Multiphase flows: Drag Reduction by polymer additives

Ahmed et al. Phys. Rev. Fluids, 6, 104302 (2021)

- Interface-resolved DNS of turbulent bubbly channel flow at $Re_{\tau} = 180$
 - Polymer additives (FENE-P)
 - Soluble surfactant (Triton-X100)
- Main Findings:
 - Drag reduction is fully realized in singlephase flow
 - Drag reduction is lost in bubbly flows due to formation of bubble wall layer
 - Polymer drag reduction is realized only when surfactant is present

Elastic instability

Nas

Groisman & Steinberg, Nature (2001)

Thanks

- Supported by The Scientific and Technical Council of Turkey (TUBITAK) and Turkish Academy of Sciences (TUBA)
- Collaborators:
 - Prof. Howard A. Stone, Princeton University
 - Prof. Gretar Tryggvason, Johns Hopkins University
 - Prof. James B. Grotberg, The University of Michigan, Ann Arbor
 - Prof. Utkan Demirci, Stanford University
 - Prof. Alper Kiraz, Koc University