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What is a fractal?

A fractal is a pattern that repeats itself at different scales. This
property is called ,Self-Similarity”.

Figure: Romanesco cauliflower (Pixabay public domain picture)
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Examples of fractals

Fractals are found all over nature...

Figure: A snowflake (Pixabay public domain photo) Figure: Trees (Pixabay public domain photo)
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... in geometry fractals can be created by repeating a simple

Figure: Sierpinhski triangle (public domain).

Von Koch snowflake (public domain, author:
Miguel de Campos)
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Examples of fractals

...in algebra - by calculating simple nonlinear equations over and over
again.

Mandelbrot set - a set
of complex numbers C for
which the function

fz)=22+C

does not diverge to infinity
when iterated from z = 0.

Mandelbrot zoom animation (public domain)
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Fractal dimension

Calculating length of the Koch curve with sticks.
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Fractal dimension

Calculating lengths of the Koch curve with sticks.

b= (5) - (5) ﬁﬁmm

Forn — oo, Lp — o0

Consider A
N = GiD N m Pt m

where

N - number of offsprings,
e - rescaling factor,

D - dimension.
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Fractal dimension

Calculating lengths of the Koch curve with sticks.

A7
For non-fractal curves e s
1\ D
— (5 D=1 ; A ,z
3 (3) 9 )
AT A

where D is the dimension
For the von Koch curve

1 -D
4:() . D=1.2619,

3
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Fractals...

= ...are pretty

= ...are patterns that repeat themselves at different scales

= ...can be found in nature (snowflakes, trees, spirals)

= ...can be created by repeating a simple process

= ...0r iterative calculations with the use of nonlinear equations
= ...have non-integer dimensions.
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Fractals and turbulence

Coastline paradox.

Lewis Fry Richardson tried to
measure the coastline of the
Great Britain with a ruler...

... and failed

(Because the coastline is a
fractal structure.)
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Eddy cascade.

‘ ‘ . Energy injection

Energy transfer
between scales

.~

Energy dissipation

Figure: Richardson-Kolmogorov’s cascade picture

Lewis Fry Richardson was the
author of the famous poem
about turbulence:

Big whirls have little whirls that
feed on their velocity,

and little whirls have lesser
whirls and so on to viscosity,
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Energy transfer
between scales

000000000 ...

Energy dissipation

Figure: Energy cascade

m energy is injected at large
scales (shear production,
buoyancy production)

m ... itis transported towards
smaller and smaller scales in
the energy cascade

m ... it is converted into heat at
the smallest scales
0(0.001m)-0(0.01m)
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Kolmogorov’s similarity hypothesis

Assumes that scale similarity exist

within the inertial range scales
log E(k)

Energy spectrum

L E(r) ~ ¢2/375/3

/ \ % - wavenumber,
a1 e - dissipation rate
Structure function

og k
- S(r) ~ (er)?/?

Equilibrium range

Inertial range

Figure: Energy spectrum

K - wavenumber,
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Intermittency - 5 model of Frish et al.

m Frisch et al. [J. Fluid Mech., 87,
1978] proposed the S model

m They assumed that after n
Eneray fecton generations only a fraction of the
— space 3" is occupied by an
cegyuanser ACtIVE fluid and

between scales

-D
N= (1
Energy dissipation

where D~ 2.5

m This gives an intermittency
correction to the structure
functions

Figure: Intermittent energy cascade
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Fractal structure of clouds

Investigation of the cloud-
clear air interface

Malinowski & Zawadzki [JAS, 50, 1993]

The estimated fractal di-
mension of the cloud-clear
air interface is

D =255

Figure: Cloud (Pixaby, public domain)
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2D turbulence and SLE curves

Schramm-Loewner SLE curves with a parameter  are random curves of the
fractal dimension

K
D—14"
*38

They are the scaling limit of a variety of two-dimensional lattice models.
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Figure: SLE curves, Shibasaki & Saito [Entropy, 23, 2021], CC-BY 4.0
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2D turbulence and SLE curves

Schramm-Loewner SLE curves are also boundaries of large vorticity
clusters in 2D turbulence. [sernard et al. Nature, 2, 2006].

SLE curves are conformally invariant curves.
Probability measure of zero-vorticity in 2D inviscid turbulence is conformally
invariant [wactawczyk et al., Phys. Rev. Fluids, 6, 2021]

Figure: 2D turbulence in Jupiter's atmosphere (NASA, public domain)
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Fractal Interpolation technique (FIT)

Turbulent velocity signals have
a fractal dimension

.
D~17
~1. :
)

which is close to the value

D=5/3 ~ 1.6667

|

which is expected for Gaussian
processes with a —5/3 spec-

trum .
[Scotti et al. Phys. Rev. E 51, 1995] Figure: Fractal signal.
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Fractal Interpolation technique (FIT)

The FIT is an iterative mapping procedure to construct synthetic
small-scale structures of any field (e.g velocity) from the knowledge of
its filtered field. [Scotti & Meneveau, Physica D, 1999]

k

Figure: a) Different stages during the construction of a fractal function after 0,1 and 10 iterations b) Energy spectrum of the
constructed signal.
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Fractal reconstruction

Large Eddy Simulation method introduces spatial filtering (i.e. effective
coarse-graining of turbulent field).

FIT can be used as a subgrid-scale model which allows to reproduce and
explain roboust characteristics of the sub-grid scales.

Reconstruction of
sub-grid scales
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Fractals and turbulence

= Richardson’s energy cascade picture — self-similarity of scales
= Phenomenon of intermittency — explained by the fractal structure

= Fractal structure of surfaces in turbulence (e.g. cloud-clear air
interface)

s Fractal SLE curves in 2D and quasi-geostrophic turbulence

s Fractal interpolation method to reconstruct subrgid scales in LES
— Scotti & Meneveau, (1999)
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Fractal interpolation technique (FIT)

Stretching parameter d - the verti-
cal stretching of the left and right
segments of three interpolation
points at each iteration.

The stretching parameter is re-
lated to the scaling exponent of the
spectrum D as:

N
D=1+logy) |d| ~ 5/3

n=1

where N + 1 is the number of
anchor points [Orey (1970), Praskovsky et al.

(1993), Scotti et al. (1995)]

Figure: Estimation of the stretching parameters.
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|| d = i2_1/3 Scotti and Meneveau [Physica D,
127 1999]

md= 70887,70676 Basu et al. [Phys.

Rev. E, 70 2004]

m spatially randomized |d| with a
prescribed Log-Poisson
distribution ping et al. Phys. Rev. E 82 2010

m stretching parameters estimated
directly from experimental data
Akinlabi et al. [Flow, Turb. Comb 103 2019]

1074 1072 10°
k1 n
Figure: Velocity spectrum in stratocumulus cloud

(POST campaign). black line: experiment,
magenta line: theoretical form
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Estimation of the stretching parameters

m Consecutive filtering of the
velocity/ scalar field is performed
Akinlabi et al. [Flow, Turb. Comb 103 2019]

n Mazel & Hayes [IEEE Trans. on signal
processing 40, 1992] algorithm is used to
calculate stretching coefficients
at each step by comparison of
the fields at resolution n and

Figure: Frequency spectrum of buoyancy in
n-+ 1 stratocumulus cloud (based on DNS data of J. P.
Mellado, priv. comm).
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Estimation of the stretching parameters

—— Forced HIT DNS
m Stretching parameter d is a o ===
random variable and we oate
determined its probability density s
function (PDF). & o
0.008
m For this we used various data ons
from numerical and field o | | | |
experiments R s ’ o .

= In the inertial range the PDF has
a universal shape

Figure: PDF of stretching parameters for velocity.
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Estimation of the stretching parameters

= Universal PDF of d is also
obtained for scalar fields -
potential temperature and
specific humidity

m it is consistent with the —5/3
scaling the inertial range,

= but it also accounts for the
intermittency (scale-symmetry
breaking)

0018 -
0016 -
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T o012
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0008 -
0.006 |
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Figure: PDF of stretching parameters for velocity,
potential temperature and specific humidity. Based
on POST data (E. Akinlabi, priv. comm.).
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Reconstruction of sub-grid velocity

Sub-grid velocity and scalar fields can be reconstructed with FIT

Figure: Reconstruction of a 2D field
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Reconstruction of sub-grid velocity

Sub-grid velocity and scalar

o
. fields can be reconstructed
B . i
E with FIT
s
8 s
©
=
. — — fittered DNS velocity signal
102 \ —— FIT velocity signal (random d from PDF)
= = FIT velocity signal (d= +2'%)
FIT velocity signal (d=-0.887, -0.676)
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Figure: Reconstructed velocity spectra.

Figure: a) filtered LES velocity field, b) reconstructed field
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Reconstruction of sub-grid velocity

Intermittency in turbulence — non-Gaussian PDF of velocity
increments

102
1072 /\
gEE
- \
> /i
o 10 -4 /s
= p
3 yau
o A
T ] /
a 10°
o
E} N
<
© g | |—— DNS velocity signal
10 = = filtered DNS velocity signal
— FIT velocity signal (d=  +2'%)
——— FIT velocity signal (d=-0.887, -0.676)
FIT velocity signal (random d from PDF)
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-10 0 10 12 10 8 6 -4
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Figure: PDF of velocity increment 6u = u(x + r) — u(x). [Akinlabi et al., Flow, Turb. Comb., 103, 2019]
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Consider LES field with grid reso-
lution A.

Test filtering with filter of the width
2A provides the ’‘residual’ kinetic
energy

—

kr = ujuj —

=)
)

<
e

1

which can be compared with re-
sults of fractal reconstruction back
to resolution A.

——LES
—FIT

PDF(Residual K.E)
=]

10°

4 -2 2 4

0
Residual K.E

Figure: Subgrid kinetic energy for test-filtered LES
compared with results of FIT reconstruction [E. Akinlabi
PhD thesis, 2020]

| On the fractal reconstruction of velocity and scalar fields in turbulent flow | 30/34



“ UNIVERSITY
= OF WARSAW

Reconstruction of sub-grid velocity

Reconstructed FIT field is corre-
lated in space but not in time.

Justification: A priori analysis of
DNS data show short-range time
correlation of the stretching pa-
rameters (of the order of 7))

comparable to the autocorrelation ! : . ¢ !
of velocity gradients. Figure: Correlation of stretching parameters and velocity

gradients [E. Akinlabi PhD thesis, 2020]
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Reconstruction of sub-grid velocity

In 1D single reconstruction step
doubles number of grid points.

In 3D single reconstruction step
increases number of grid points
23 = 8 times

28

n~
o

NN

me / LES CPU time
o

U ti
BE e RN

-~

4
LES (no FIT)

/7

LESwithd -
reconstruction
steps

LES with 3
reconstruction
steps
LES with 1
reconstruction
step LES with 2
reconstruction
steps

o

1 2 3 4

Figure: CPU time for 0,1,2,3 and 4 reconstruction

steps.
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velocity field o

velocity field

U=U;es + Uggs

scalar fields

0= 9LES + esgs

particle tracking

— x- direction (m) ~
ULES + uSQS Figure: lllustrative picture of particle tracking in the
t
filtered coarse-grained and in the reconstructed
field.
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Conclusions

s Fractal interpolation technique (FIT) with random stretching
parameters used to reconstruct residual field in LES.

s FIT correctly predicts some rough features of sub-grid turbulence
in the inertial range, like the intermittency and scaling.

= FIT can be coupled with Lagrangian models for particle tracking.
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