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What is a fractal?

A fractal is a pattern that repeats itself at different scales. This
property is called „Self-Similarity”.

Figure: Romanesco cauliflower (Pixabay public domain picture)
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Examples of fractals

Fractals are found all over nature...

Figure: A snowflake (Pixabay public domain photo) Figure: Trees (Pixabay public domain photo)
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Examples of fractals

... in geometry fractals can be created by repeating a simple
process...

Figure: Sierpiński triangle (public domain). Von Koch snowflake (public domain, author: António
Miguel de Campos)
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Examples of fractals

...in algebra - by calculating simple nonlinear equations over and over
again.

Mandelbrot set - a set
of complex numbers C for
which the function

f (z) = z2 + C

does not diverge to infinity
when iterated from z = 0.

. Mandelbrot zoom animation (public domain)
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Fractal dimension

Calculating length of the Koch curve with sticks.

L0 = 1

L1 = 4 · 1
3

L2 = 42 · 1
32

L3 = 43 · 1
33

. . .

Ln = 4n ·
(

1
3

)n

.

.

.

.

.
Figure: Koch curve.
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Fractal dimension

Calculating lengths of the Koch curve with sticks.

Ln = 4n ·
(

1
3

)n

=

(
4
3

)n

For n→∞, Ln →∞
Consider

N = ε−D

where
N - number of offsprings,
ε - rescaling factor,
D - dimension.
.
.
.
.
.

Figure: Koch curve.
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Fractal dimension

Calculating lengths of the Koch curve with sticks.

N = ε−D

For non-fractal curves

3 =

(
1
3

)−D

, D = 1,

where D is the dimension
For the von Koch curve

4 =

(
1
3

)−D

, D = 1.2619,

.

.

.

.

.
Figure: Koch curve.
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Fractals...

� ...are pretty
� ...are patterns that repeat themselves at different scales
� ...can be found in nature (snowflakes, trees, spirals)
� ...can be created by repeating a simple process
� ...or iterative calculations with the use of nonlinear equations
� ...have non-integer dimensions.
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Fractals and turbulence

Coastline paradox.

Figure: Richardson-Kolmogorov’s cascade picture

Lewis Fry Richardson tried to
measure the coastline of the
Great Britain with a ruler...
... and failed
(Because the coastline is a
fractal structure.)

.

.

.

.

.

.

.

.

.
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Fractals and turbulence

Eddy cascade.

Figure: Richardson-Kolmogorov’s cascade picture

Lewis Fry Richardson was the
author of the famous poem
about turbulence:

Big whirls have little whirls that
feed on their velocity,
and little whirls have lesser
whirls and so on to viscosity,
.
.
.
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Richardson-Kolmogorov’s cascade

Figure: Energy cascade

� energy is injected at large
scales (shear production,
buoyancy production)

� .... it is transported towards
smaller and smaller scales in
the energy cascade

� ... it is converted into heat at
the smallest scales
O(0.001m)–O(0.01m)
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Kolmogorov’s similarity hypothesis

Figure: Energy spectrum

Assumes that scale similarity exist
within the inertial range scales

Energy spectrum

E(κ) ∼ ε2/3κ−5/3

κ - wavenumber,
ε - dissipation rate
Structure function

S(r) ∼ (εr)2/3

κ - wavenumber,
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Intermittency - β model of Frish et al.

Figure: Intermittent energy cascade

� Frisch et al. [J. Fluid Mech., 87,
1978] proposed the β model

� They assumed that after n
generations only a fraction of the
space βn is occupied by an
active fluid and

N =

(
1
2

)−D

where D ≈ 2.5

� This gives an intermittency
correction to the structure
functions
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Fractal structure of clouds

Investigation of the cloud-
clear air interface
Malinowski & Zawadzki [JAS, 50, 1993]

The estimated fractal di-
mension of the cloud-clear
air interface is

D = 2.55

.

.
Figure: Cloud (Pixaby, public domain)
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2D turbulence and SLE curves

Schramm-Loewner SLE curves with a parameter κ are random curves of the
fractal dimension

D = 1 +
κ

8
They are the scaling limit of a variety of two-dimensional lattice models.

Figure: SLE curves, Shibasaki & Saito [Entropy, 23, 2021], CC-BY 4.0
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2D turbulence and SLE curves

Schramm-Loewner SLE curves are also boundaries of large vorticity
clusters in 2D turbulence. [Bernard et al. Nature, 2, 2006].
SLE curves are conformally invariant curves.
Probability measure of zero-vorticity in 2D inviscid turbulence is conformally
invariant [Wacławczyk et al., Phys. Rev. Fluids, 6, 2021]

Figure: 2D turbulence in Jupiter’s atmosphere (NASA, public domain)
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Fractal Interpolation technique (FIT)

Turbulent velocity signals have
a fractal dimension

D ≈ 1.7,

which is close to the value

D = 5/3 ≈ 1.6667

which is expected for Gaussian
processes with a −5/3 spec-
trum
[Scotti et al. Phys. Rev. E 51, 1995]
.

Figure: Fractal signal.
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Fractal Interpolation technique (FIT)

The FIT is an iterative mapping procedure to construct synthetic
small-scale structures of any field (e.g velocity) from the knowledge of
its filtered field. [Scotti & Meneveau, Physica D, 1999]
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Figure: a) Different stages during the construction of a fractal function after 0,1 and 10 iterations b) Energy spectrum of the
constructed signal.
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Fractal reconstruction

Large Eddy Simulation method introduces spatial filtering (i.e. effective
coarse-graining of turbulent field).
FIT can be used as a subgrid-scale model which allows to reproduce and
explain roboust characteristics of the sub-grid scales.

Figure: Leonardo da Vinci - A deluge (public domain)
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Fractals and turbulence

� Richardson’s energy cascade picture – self-similarity of scales
� Phenomenon of intermittency – explained by the fractal structure
� Fractal structure of surfaces in turbulence (e.g. cloud-clear air

interface)
� Fractal SLE curves in 2D and quasi-geostrophic turbulence
� Fractal interpolation method to reconstruct subrgid scales in LES

– Scotti & Meneveau, (1999)
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Fractal interpolation technique (FIT)

Stretching parameter d - the verti-
cal stretching of the left and right
segments of three interpolation
points at each iteration.
The stretching parameter is re-
lated to the scaling exponent of the
spectrum D as:

D = 1 + logN

N∑
n=1

|dn| ≈ 5/3

where N + 1 is the number of
anchor points [Orey (1970), Praskovsky et al.

(1993), Scotti et al. (1995)]
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Figure: Estimation of the stretching parameters.
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Stretching parameters

� d = ±2−1/3 Scotti and Meneveau [Physica D,

127 1999]

� d = −0.887,−0.676 Basu et al. [Phys.

Rev. E, 70 2004]

� spatially randomized |d | with a
prescribed Log-Poisson
distribution Ding et al. Phys. Rev. E 82 2010

� stretching parameters estimated
directly from experimental data
Akinlabi et al. [Flow, Turb. Comb 103 2019]
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Figure: Velocity spectrum in stratocumulus cloud
(POST campaign). black line: experiment,
magenta line: theoretical form
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Estimation of the stretching parameters

� Consecutive filtering of the
velocity/ scalar field is performed
Akinlabi et al. [Flow, Turb. Comb 103 2019]

� Mazel & Hayes [IEEE Trans. on signal

processing 40, 1992] algorithm is used to
calculate stretching coefficients
at each step by comparison of
the fields at resolution n and
n + 1
.

Figure: Frequency spectrum of buoyancy in
stratocumulus cloud (based on DNS data of J. P.
Mellado, priv. comm).
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Estimation of the stretching parameters

� Stretching parameter d is a
random variable and we
determined its probability density
function (PDF).

� For this we used various data
from numerical and field
experiments

� In the inertial range the PDF has
a universal shape

Figure: PDF of stretching parameters for velocity.
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Estimation of the stretching parameters

� Universal PDF of d is also
obtained for scalar fields -
potential temperature and
specific humidity

� it is consistent with the −5/3
scaling the inertial range,

� but it also accounts for the
intermittency (scale-symmetry
breaking)

Figure: PDF of stretching parameters for velocity,
potential temperature and specific humidity. Based
on POST data (E. Akinlabi, priv. comm.).
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Reconstruction of sub-grid velocity

Sub-grid velocity and scalar fields can be reconstructed with FIT

Figure: Reconstruction of a 2D field
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Reconstruction of sub-grid velocity
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Figure: a) filtered LES velocity field, b) reconstructed field

Sub-grid velocity and scalar
fields can be reconstructed
with FIT
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Figure: Reconstructed velocity spectra.
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Reconstruction of sub-grid velocity

Intermittency in turbulence – non-Gaussian PDF of velocity
increments
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Figure: PDF of velocity increment δu = u(x + r) − u(x). [Akinlabi et al., Flow, Turb. Comb., 103, 2019]
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Reconstruction of sub-grid velocity

Consider LES field with grid reso-
lution ∆.
Test filtering with filter of the width
2∆ provides the ’residual’ kinetic
energy

kr = ̂̃ui ũi − ̂̃ui
̂̃ui

which can be compared with re-
sults of fractal reconstruction back
to resolution ∆.
.
.

Figure: Subgrid kinetic energy for test-filtered LES
compared with results of FIT reconstruction [E. Akinlabi
PhD thesis, 2020]
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Reconstruction of sub-grid velocity

Reconstructed FIT field is corre-
lated in space but not in time.

Justification: A priori analysis of
DNS data show short-range time
correlation of the stretching pa-
rameters (of the order of τη)

comparable to the autocorrelation
of velocity gradients.
.
.

Figure: Correlation of stretching parameters and velocity
gradients [E. Akinlabi PhD thesis, 2020]
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Reconstruction of sub-grid velocity

In 1D single reconstruction step
doubles number of grid points.

In 3D single reconstruction step
increases number of grid points
23 = 8 times

.

0 1 2 3 4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

C
P

U
 t
im

e
 /
 L

E
S

 C
P

U
 t
im

e
LES (no FIT)

LES with 1

reconstruction

step LES with 2

reconstruction

steps

LES with 3

reconstruction

steps

LES with 4

reconstruction

steps

Figure: CPU time for 0,1,2,3 and 4 reconstruction
steps.

| On the fractal reconstruction of velocity and scalar fields in turbulent flow | 32/34



Lagrangian particle tracking in the reconstructed
velocity field

velocity field

U = ULES + usgs

scalar fields

θ = θLES + θsgs

particle tracking

dX
dt

= ULES + usgs

.

Figure: Illustrative picture of particle tracking in the
filtered coarse-grained and in the reconstructed
field.
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Conclusions

� Fractal interpolation technique (FIT) with random stretching
parameters used to reconstruct residual field in LES.

� FIT correctly predicts some rough features of sub-grid turbulence
in the inertial range, like the intermittency and scaling.

� FIT can be coupled with Lagrangian models for particle tracking.
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