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 In the presence of rotation horizontal equation of motion easily generalizes to:



  

On the other hand mass flux can be written as:

Comparing two expressions for mass flux one gets conservation of mass in the following 
form:

 the area is arbitrary the integrand itself must vanish, resulting in

There are many ways to derive the above. 

Momentum equations (hydrostatic balance + horizontal momentum) together with the 
mass conservation form the simplest set of equations applicable to geophysicsl fluid 
dynamics: shallow water equations.



  



  

Because the horizontal velocity is depth independent, the vertical velocity plays no role in 
advection. Vertical velocity is certainly not zero for  but because of the vertical independence 
of the horizontal flow w does have a simple vertical structure;

which after integration really gives w independent of height:

 at the upper surface w=Dη/Dt so that here we have

Eliminating the divergence term from the last two equations gives



  

REDUCED GRAVITY EQUATIONS
Consider now a single shallow moving 
layer of fluid on top a deep, quiescent 
fluid layer and beneath a fluid of 
negligible inertia. This configuration is 
often used a model of the upper ocean: 
the upper layer represents flow in 
perhaps the upper few hundred meters 
of the ocean, the lower layer the near-
stagnant abyss.

 If we turn the model upside-down we 
have a model, perhaps slightly less 
realistic, of the atmosphere: the lower 
layer represents motion in the 
troposphere above which lies an inactive 
stratosphere. The equations of motion 
are virtually the same in both cases.



  

Pressure gradient in the active layer
We’ll derive the equations for the oceanic case (active layer on top) 

Free upper surface:

The above gives momentum equation in the form:

In the lower layer:

Since the  layer is motionless the horizontal pressure gradient in it is zero :



  

Defining “reduced gravity” as:

we get the following momentum equation:

 the  mass conservation equation has the form:

where 

Since  g>>g' ,  surface displacements are much smaller than the displacements at the 
interior interface. This is the case of the real ocean where the mean interior isopycnal 
displacements may be several tens of meters but variations in the mean height of ocean 
surface are of order centimeters.

The smallness of the upper surface displacement suggests that we will make little error
is we impose a rigid lid at the top of the fluid. Displacements are no longer allowed, but
the lid will in general impart a pressure force to the fluid. 



  

The rigid lid approximation

 Suppose that this is P(x; y; t) is the pressure at the ocean surface. Then the horizontal 
pressure gradient in the upper layer is :

The pressure in the lower layer is  given by hydrostasy:

For zero gradient on p2 the above takes the form:
Which gives the momentum equation:

In the above which indicates that density difference between the two 
layers is important. 



  

We now consider multiple layers of fluid stacked on top of each other.
This is a crude representation of continuous stratification, but it turns out to be a powerful 
model of many geophysically interesting phenomena. The pressure is continuous across 
the interface, but the density jumps discontinuously and this allows the horizontal velocity 
to have a corresponding discontinuity. 

 MULTI-LAYER SHALLOW WATER 
EQUATIONS



  

Pressure is given by the hydrostatic approximation.  Anywhere the can be find by 
integrating down from the top. 

At  a height z in the first layer we have: 

and in the following layer

With . Such a reasoning can be extended into next layers:
 

The above can be written in terms of the layer thicknesses:

The momentum equation for each layer may then be written, in general,

Finally, the mass conservation equation for each layer has the same form as the single-
layer case, and is



  

The two-layer model is the simplest model to capture the effects of stratification. 

A fluid of density ρ1 lies over a denser fluid of density ρ2 . In the reduced gravity case the 
lower layer may be arbitrarily thick and is assumed stationary and so has no horizontal
pressure gradient. In the ‘rigid-lid’ approximation the top surface displacement is 
neglected, but there is then a non-zero pressure gradient induced by the lid.



  

The momentum equations for the two layers are then:

In the top layer and

In the bottom one. 2  In the Boussinesq approximation ρ1 = ρ2 is replaced by unity.



  

Reduced-gravity multi-layer 
 is a useful model of the stratified upper ocean overlying a nearly stationary and nearly 
unstratified abyss. If we suppose there is a lid at the top, then the model is almost the 
same as previous. However, now the horizontal pressure gradient in the lowest model
layer is zero, and so we may obtain the pressures in all the active layers by integrating
the hydrostatic equation upwards from this layer. The dynamic pressure in the n’th layer is 
given by

Having rigid lid on the top:

one can easily get momentum equation in each layer.

Geostrophy and thermal wind.
When the Rossby number U /f L is small  the Coriolis term dominates the advective terms. 
In the single-layer shallow water equations:

and  the geostrophic velocity is proportional to the slope of the surface, 



  

In both the single-layer and multi-layer case, the slope of an interfacial surface is directly 
related to the difference in pressure gradient on either side and so, by geostrophic
balance, to the shear of the flow. This is the shallow water analog of the thermal wind
relation. 

Consider the interface, η, between two layers 1 and 2. The pressure in two layers is given by 
the hydrostatic relation and so,



  



  

This is the thermal wind equation for the shallow water system. It implies the shear is 
proportional to the interface slope,

Imagine the atmosphere as two layers of fluid with a meridionally decreasing temperature 
 represented by an interface that slopes upward toward the pole 
In the Northern hemisphere f is positive and we have:

Indicating that  such temperature gradient is associated with a positive shear. 



  

FORM DRAG
When the interface between two layers varies with position the layers exert a pressure 
force on each other. If the bottom is not flat then the topography and the bottom layer 
can exert forces on each other. This is known as form drag, influencing momentum of 
the flow.
Consider a layer confined between two interfaces, η1(x,y) and η2(x,y). Over some zonal 
interval L the average zonal pressure force on fluid is:

To obtain the second line we suppose that the integral is around a closed path, such as 
a circle of latitude, and the average is denoted with an overbar. 



  

These terms represent the transfer of momentum from one layer to the next, and at a 
particular interface, i, we may define the form drag:

The form drag is a stress, and as the layer depth shrinks to zero its vertical derivative is 
the force on the fluid. 

It is a  mechanism for the vertical transfer of momentum .

Three Tree Point Form Drag Experiment

The purpose of the Three Tree Point Experiment is to 
measure the pressure drop over a topographic feature 
caused by the currents flowing over top of it.  We have 
developed special sensors to measure the force that a ridge 
can exert on the overlying flow, known as “form drag.”  Our 
objective is to relate this force to other variables we can 
easily measure, such as the tidal strength and the density 
structure in Puget Sound.  Three Tree Point represents an 
ideal natural geophysical laboratory for us to conduct these 
important experiments because the tidal currents are 
predictable and deviations from them can be associated with 
form drag. 

http://mixing.coas.oregonstate.edu/threetree/Three_Tree_Point/
Overview.html



  

 CONSERVATION PROPERTIES OF SHALLOW WATER SYSTEMS

 A material invariant: potential vorticity

The vorticity of a fluid is the curl of the velocity field:

Define shallow water vorticity as  the curl of the horizontal velocityω
→
≡∇

→
×U

→

 Two types of two-
dimensional flow:

(a) linear shear flow with 
vorticity

(b) curved flow with zero 
vorticity.



  

Using the vector identity

we write the momentum equation for non-rotating fluid

as:

To obtain an evolution equation for the vorticity we take the curl of this momentum 
equation and use vector identity:

Obtaining

Knowing that one may write above as:



  

 The mass conservation equation may be written as:

Using the last form of the momentum equation and the above one gets

This is the POTENTIAL VORTICITY conservation law, and ζ/h, the potential vorticity is often 
denoted as Q.



  

Effects of rotation
In a rotating frame of reference, the shallow water momentum equation is

which may be written in a vector invariant form as

 taking the curl of this gives the vorticity equation:

The above  is simply the equation of motion for the total or absolute vorticity:

Combining it with the mass conservation gives potential vorticity in rotating coordinate 
frame:



  

Consider flow of constant depth, What are changes if planetary vorticity (Coriolis 
parameter) when changing latitude? 

Westerly flows cannot turn without forcing, they are stable!

f=2Ωsinφ



  

Vorticity and circulation

Vorticity itself is not a material invariant, its integral over a horizontal material area is. 
Consider the integral (non-rotating case):

Taking the material derivative of this gives

The first term is zero, the second term is just the derivative of the volume of a column of fluid 
and it too is zero, by mass conservation. Thus,

Which means that  the integral of the vorticity over a some cross-sectional area of the fluid 
is unchanging, although both the vorticity and area of the fluid may individually change.
Using Stokes’ theorem, it may be written



  

The above is a Kelvin circulation theorem.

Potential vorticity in the atmosphere (from Holton's book):

The potential vorticity conservation for the adiabatic atmosphere can be written as:
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49 Schematic view of westerly flow over a topographic barrier: (a) the depth of a fluid column
as a function of x and (b) the trajectory of a parcel in the (x, y) plane.




Fig. 47 A cylindrical column of 2

r moving adiabatically, conserving potential vorticity.
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Fig. 4.8 Absolute vorticity conservation for curved flow trajectories.
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If the flow is geostrophically balanced and Boussinesq then, in each layer, the velocity

obeys

Using

1
Sui=—kxVp;.
P1

(3.58) then gives

Sy —uz) = —kx g\ Vn,

or in general

Sy —wunr) =k x g,Vn.

(3.59)
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The Shallow Water Equations

For a single-layer fluid, and including the Coriolis term, the inviscid shallow water
equations are:

Momentum: o
u
— xu=—gVn. SW.1
= fxu gVn ( )
Mass Conservation:
Dh oh
2 hVeu=0  or 24+ V- (hu)=0. (SW2)
Dt ot

where u is the horizontal velocity, 4 is the total fluid thickness, 7 is the height

of the upper free surface and 7, is the height of the lower surface (the bottom

topography). Thus, (x, y, 1) = n(x, y, 1) — n5(x, »). The material derivative is
D 9 d d d

-t P

. (SW.3)

with the rightmost expresion holding in Cartesian coordinates.
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where f = fk. Just as with the primitive equations, / may be constant or may
vary with latitude, so that on a spherical planet / = 22 sin? and on the S-plane

= fo+ By.




3.1.1 Momentum equations

The vertical momentum equation is just the hydrostatic equation,

ap
oo = P (3.1)
0z

and, because density is assumed constant, we may integrate this to

plx, =—pgz+ po (3.2)

At the top of the fluid, z = 7, the pressure is determined by the weight of the overlying
fluid and this is assumed negligible. Thus, p = 0 at z = 7 giving
p(x.y.2) = pg(h(x.y) —2) (3.3)

The consequence of this is that the horizontal gradient of pressure is independent of
height. That is

V.p = pgV:y 3.4
where
(3.5
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The velocities « and v are functions only of x, y and  and the horizontal momentum
equation is therefore
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— = — — v7=—V_ 3.7
Dr o e Tlay T EVN 6N




gy = g(p2—p1)/;




0=+ fNH/h




X

(b)

Fig. 4.10  As in Fig. 4.9, but for casterly flow.
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Figure 3.2 The mass budget for
a column of area 4 in a shallow
water system. The fluid leaving
the column is ¢ phu - ndl where
n is the unit vector normal to
the boundary of the fluid column.
There is a non-zero vertical veloc-
ity at the top of the column if the
mass convergence into the column
is non-zero.
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Fig. 3.1 A shallow water system. /i(x,y) is the thickness of a water
column, H its mean thickness, 7(x, y) the height of the free surface and
b is the height of the lower, rigid, surface, above some arbitrary origin,
typically chosen such that the average of 5, is zero. Ay is the deviation
free surface height, so we have n = 5, + h = H + An.
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where A(x, ) is the pressure where z = 0, but we don’t need to specifiy where this is.
Thus we find

1
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In a three layer model the dynamical pressures are found to be
pr=pi1gh
p2 = pi[gh+ g\ (ha + hs + 1p)]
p3 = p1[gh+ g} (ha + hy + mp) + gh(hs + 1))
where 7 = no = 5 + hy + hy + hy and g = g(ps — p2)/p1-
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Fig. 3.6 Geostrophic flow in a shallow water system, with a positive value
of the Coriolis parameter f, as in the Northern hemisphere. The pressure
force is directed down the gradient of the height field, and this can be
balanced by the Coriolis force if the fluid velocity is at right angles to it. If
f were negative, the geostrophic flow would be reversed.
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Fig. 31 A shallow water system. (v, ) is the thickness of a water
column, H its mean thickness, 7(x. y) the height of the free surface and
1y is the height of the lower, rigid, surface, above some arbitrary origin,
typically chosen such that the average of 1 is zero. Ay is the deviation
free surface height, so we have y =, + h = H + A
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 In the presence of rotation horizontal equation of motion easily generalizes to:















On the other hand mass flux can be written as:











Comparing two expressions for mass flux one gets conservation of mass in the following form:









 the area is arbitrary the integrand itself must vanish, resulting in













There are many ways to derive the above. 





Momentum equations (hydrostatic balance + horizontal momentum) together with the mass conservation form the simplest set of equations applicable to geophysicsl fluid dynamics: shallow water equations.

















Because the horizontal velocity is depth independent, the vertical velocity plays no role in advection. Vertical velocity is certainly not zero for  but because of the vertical independence of the horizontal flow w does have a simple vertical structure;









which after integration really gives w independent of height:













 at the upper surface w=Dη/Dt so that here we have









Eliminating the divergence term from the last two equations gives























REDUCED GRAVITY EQUATIONS

Consider now a single shallow moving layer of fluid on top a deep, quiescent fluid layer and beneath a fluid of negligible inertia. This configuration is often used a model of the upper ocean: the upper layer represents flow in perhaps the upper few hundred meters of the ocean, the lower layer the near-stagnant abyss.





















 If we turn the model upside-down we have a model, perhaps slightly less realistic, of the atmosphere: the lower layer represents motion in the troposphere above which lies an inactive stratosphere. The equations of motion are virtually the same in both cases.













Pressure gradient in the active layer

We’ll derive the equations for the oceanic case (active layer on top) 



Free upper surface:

















The above gives momentum equation in the form:











In the lower layer:





Since the  layer is motionless the horizontal pressure gradient in it is zero :















Defining “reduced gravity” as:



we get the following momentum equation:











 the  mass conservation equation has the form:









where 



Since  g>>g' ,  surface displacements are much smaller than the displacements at the interior interface. This is the case of the real ocean where the mean interior isopycnal displacements may be several tens of meters but variations in the mean height of ocean surface are of order centimeters.



The smallness of the upper surface displacement suggests that we will make little error

is we impose a rigid lid at the top of the fluid. Displacements are no longer allowed, but

the lid will in general impart a pressure force to the fluid. 





















The rigid lid approximation



 Suppose that this is P(x; y; t) is the pressure at the ocean surface. Then the horizontal pressure gradient in the upper layer is :







The pressure in the lower layer is  given by hydrostasy:





















For zero gradient on p2 the above takes the form:

Which gives the momentum equation:









In the above 						which indicates that density difference between the two layers is important. 





















We now consider multiple layers of fluid stacked on top of each other.

This is a crude representation of continuous stratification, but it turns out to be a powerful model of many geophysically interesting phenomena. The pressure is continuous across the interface, but the density jumps discontinuously and this allows the horizontal velocity to have a corresponding discontinuity. 





 MULTI-LAYER SHALLOW WATER EQUATIONS









Pressure is given by the hydrostatic approximation.  Anywhere the can be find by integrating down from the top. 



At  a height z in the first layer we have: 



and in the following layer



With 					. Such a reasoning can be extended into next layers:

 











The above can be written in terms of the layer thicknesses:







The momentum equation for each layer may then be written, in general,









Finally, the mass conservation equation for each layer has the same form as the single-layer case, and is























The two-layer model is the simplest model to capture the effects of stratification. 







































A fluid of density ρ1 lies over a denser fluid of density ρ2 . In the reduced gravity case the lower layer may be arbitrarily thick and is assumed stationary and so has no horizontal

pressure gradient. In the ‘rigid-lid’ approximation the top surface displacement is neglected, but there is then a non-zero pressure gradient induced by the lid.











The momentum equations for the two layers are then:









In the top layer and















In the bottom one. 2  In the Boussinesq approximation ρ1 = ρ2 is replaced by unity.

















Reduced-gravity multi-layer 

 is a useful model of the stratified upper ocean overlying a nearly stationary and nearly unstratified abyss. If we suppose there is a lid at the top, then the model is almost the same as previous. However, now the horizontal pressure gradient in the lowest model

layer is zero, and so we may obtain the pressures in all the active layers by integrating

the hydrostatic equation upwards from this layer. The dynamic pressure in the n’th layer is given by









Having rigid lid on the top:





one can easily get momentum equation in each layer.





Geostrophy and thermal wind.

When the Rossby number U /f L is small  the Coriolis term dominates the advective terms. In the single-layer shallow water equations:







and  the geostrophic velocity is proportional to the slope of the surface, 















In both the single-layer and multi-layer case, the slope of an interfacial surface is directly related to the difference in pressure gradient on either side and so, by geostrophic

balance, to the shear of the flow. This is the shallow water analog of the thermal wind

relation. 





Consider the interface, η, between two layers 1 and 2. The pressure in two layers is given by the hydrostatic relation and so,

















This is the thermal wind equation for the shallow water system. It implies the shear is proportional to the interface slope,



Imagine the atmosphere as two layers of fluid with a meridionally decreasing temperature  represented by an interface that slopes upward toward the pole 

In the Northern hemisphere f is positive and we have:











Indicating that  such temperature gradient is associated with a positive shear. 









FORM DRAG

When the interface between two layers varies with position the layers exert a pressure force on each other. If the bottom is not flat then the topography and the bottom layer can exert forces on each other. This is known as form drag, influencing momentum of the flow.

Consider a layer confined between two interfaces, η1(x,y) and η2(x,y). Over some zonal interval L the average zonal pressure force on fluid is:





























To obtain the second line we suppose that the integral is around a closed path, such as a circle of latitude, and the average is denoted with an overbar. 













These terms represent the transfer of momentum from one layer to the next, and at a particular interface, i, we may define the form drag:











The form drag is a stress, and as the layer depth shrinks to zero its vertical derivative is the force on the fluid. 



It is a  mechanism for the vertical transfer of momentum .







Three Tree Point Form Drag Experiment



The purpose of the Three Tree Point Experiment is to measure the pressure drop over a topographic feature caused by the currents flowing over top of it.  We have developed special sensors to measure the force that a ridge can exert on the overlying flow, known as “form drag.”  Our objective is to relate this force to other variables we can easily measure, such as the tidal strength and the density structure in Puget Sound.  Three Tree Point represents an ideal natural geophysical laboratory for us to conduct these important experiments because the tidal currents are predictable and deviations from them can be associated with form drag. 









http://mixing.coas.oregonstate.edu/threetree/Three_Tree_Point/Overview.html





 CONSERVATION PROPERTIES OF SHALLOW WATER SYSTEMS



 A material invariant: potential vorticity



The vorticity of a fluid is the curl of the velocity field:







Define shallow water vorticity as  the curl of the horizontal velocity













 Two types of two-dimensional flow:



(a) linear shear flow with vorticity



(b) curved flow with zero vorticity.







Using the vector identity







we write the momentum equation for non-rotating fluid								







as:







To obtain an evolution equation for the vorticity we take the curl of this momentum equation and use vector identity:











Obtaining







Knowing that						one may write above as:



























 The mass conservation equation may be written as:











Using the last form of the momentum equation and the above one gets



















This is the POTENTIAL VORTICITY conservation law, and ζ/h, the potential vorticity is often denoted as Q.









Effects of rotation

In a rotating frame of reference, the shallow water momentum equation is











which may be written in a vector invariant form as









 taking the curl of this gives the vorticity equation:











The above  is simply the equation of motion for the total or absolute vorticity:







Combining it with the mass conservation gives potential vorticity in rotating coordinate frame:



















Consider flow of constant depth, What are changes if planetary vorticity (Coriolis parameter) when changing latitude? 



Westerly flows cannot turn without forcing, they are stable!







f=2Ωsinφ





Vorticity and circulation



Vorticity itself is not a material invariant, its integral over a horizontal material area is. Consider the integral (non-rotating case):









Taking the material derivative of this gives











The first term is zero, the second term is just the derivative of the volume of a column of fluid and it too is zero, by mass conservation. Thus,











Which means that  the integral of the vorticity over a some cross-sectional area of the fluid is unchanging, although both the vorticity and area of the fluid may individually change.

Using Stokes’ theorem, it may be written











The above is a Kelvin circulation theorem.





Potential vorticity in the atmosphere (from Holton's book):



The potential vorticity conservation for the adiabatic atmosphere can be written as:

















