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Clouds as Fluids
BJORN STEVENS & A. PIER SIEBESMA

From a fluid-dynamical point of view clouds are a dilute dis-
persion of condensate in a multi-phase and multi-component
turbulent flow. Their description thus adopts the language
of thermodynamics and fluid dynamics. The multi-phase
(ice-liquid-vapor) and multi-component (dry-air and water)
essence of the flow complicates the thermodynamic and fluid
dynamical description of fluids, which is usually presented
for single component, single phase flows, as for liquid wa-
ter, or simply dry air. In this chapter an overview of the
main equation systems and concepts used to describe clouds
and cloudy flows is presented. It is assumed that the reader
has a basic background in atmospheric thermodynamics and
fluid mechanics, and this text attempts to build on this back-
ground to introduce the special elements related to both top-
ics as applied to potentially cloudy systems and as required
by subsequent chapters. For readers relatively new to par-
ticular topics supplementary reading is suggested at the end
to help fill in what is otherwise a dense presentation of the
material.

2.1 Thermodynamics

2.1.1 A multi-component multi-phase system

The atmosphere, or air, as we experience it, is a multi-
component gas in which a great variety (if not great amount)
of fine-scale particulate matter is suspended. The gas phase
constituents include several major gases (Nitrogen, Oxygen,
Argon) which through the current era have existed in a rel-
atively fixed proportion to one another. To a large degree
these determine the thermodynamic properties of “dry air",
that is an ideal mixture composed of 78.08 % N2, 20.95 %

O2 and 0.934 % Ar, by volume. Additionally, the atmosphere
contains variable vapours such as carbon dioxide and water,
along with a host of seemingly minor gases (e.g., Neon, He-
lium, Nitrous Oxide, Ozone, Methane, Sulphur compounds,
organics) some of which can be important for determining
the radiative properties of the atmosphere and air quality.
Of the variable constituents, water is the most striking as it
ranges from abundances that vary over many many orders
of magnitude, from nearly zero in the coldest regions of the
upper troposphere, to as much as 4 % by volume over very
warm bodies of water. Because of its proclivity to change
phase and the manner in which these phase changes affect
the local temperature on the one hand, and foster diverse

interactions with radiant energy on the other, water indeli-
bly marks motions in the lower atmosphere on all time and
spatial scales. It is hard to think properly about atmospheric
motions, let alone clouds, without considering how water is
coupled to them. In this sense the simplest, accurate descrip-
tion of the dynamic atmosphere requires a description that
admits at least two-components, dry air and water, with one
component (water) admitting multiple phases.

The basic thermodynamic properties of the atmosphere
thus depend on its component parts. Typically these are de-
fined in terms of their mass, m such that for an equilibrium
system four constituents of the moist atmosphere can be de-
fined, dry air, vapour, liquid water, and solid (ice) water,
denoted by the roman subscripts d, v, l and i respectively.
The total mass of the system is thus given by sum of the
constituent masses such that

M = Md + Mv + Ml + Mi. (2.1)

The specific mass, rather than say the mixing ratio or a mo-
lar concentration, is used to describe the amount of matter
(Table 2.1). The normalised, or specific mass of a compo-
nent x is denoted by qx = Mx/M . We distinguish between
equilibrium condensed phases associated with clouds, which
evolve with the thermodynamic state in a more or less re-
versible way, and larger hydrometeors which do not. Larger
hydrometeors, like rain-drops and most forms of ice, develop
through irreversible microphysical processes such as the col-
lision and coalescence of water droplets or by rapid vapour
deposition in conditions of very high-supersaturation. These
are more difficult to approximate as an equilibrium phase.
Because they are larger, non-equilibrium phases of water in
the atmosphere are also more dilute and short-lived. Their
presence, which we largely ignore, requires the introduction
of a more expansive view of the thermodynamic constituents
within a moist atmosphere, for instance by accounting for
the mass (and perhaps temperature and velocity) of rain
and most forms of ice. Non-equilibrium phases of water are
discussed in terms of the microphysical processes in Chpt. 3.

Molar descriptions are useful for describing chemical reac-
tions. The use of mass mixing ratios, where the constituent
masses are described in terms of their mass fraction relative
to dry-air, Mx/Md, is often adopted by descriptions which
introduce water as an additional constituent. The mixing ra-
tio approach is also helpful when considering the possibility
that different components of a mass element have their own
velocity. In the case of the mixing ratio the normalising mass
is invariant in so long as the basic flow describes the motion
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Table 2.1. Mass Variables

M Mass
ρ density
qx specific mass of some constituent x

p thermodynamic pressure (pd + pv)
px partial pressure of some constituent x

of the dry air. Because the focus in this chapter is on a ther-
modynamic description for an equilibrium system, we adopt
the specific humidity description.

Thermodynamic systems in local equilibrium are thus
identified with mass elements, sometimes referred to as fluid-
or air-parcels. Formally the concept gains validity for mass
elements small enough that the volume they occupy en-
compasses a scale much smaller than the scale over which
thermodynamic properties vary, but much larger than the
mean-free path. Diffusion rapidly homogenises the atmo-
sphere on scales smaller than the Kolmogorov length scale,
lK = (ν3/ε)1/4, where ν is the viscosity of the atmosphere
and ε is the turbulent dissipation rate. In vigorous cumulus
clouds the dissipation rate may approach 0.05 m2 s−3 which
given a kinematic viscosity, ν = 1.5× 10−5 m2 s−1 implies
that variations in thermal properties are not present on scales
less than K = 0.5 mm. This is several thousand times larger
than the mean free path of an air molecule, making the con-
cept of an air parcel a useful one.

In developing the present thermodynamic description of
a cloudy atmosphere we make several assumptions. The at-
mosphere is assumed to be comprised of dry air and water.
Both the dry air and water in its vapour form are assumed
to be ideal gases (non-interacting point particles) in an ideal
mixture. The condensate phase is taken to be an ideal liq-
uid, so that it is incompressible, and it’s volume fraction is
considered to be negligibly small, so that the total volume,
V , of the system is seen by both the gas and vapour con-
stituents, i.e., vv = V /Mv denotes the specific volume of
the vapour. The specific heats of the different constituents
are considered to be small, surface effects, for instance at
the condensate/vapour interface are neglected, as are elec-
tromagnetic interactions.

The assumption that the condensate volume fraction is
vanishingly small arises from the diluteness of clouds. Typi-
cally the specific condensate mass is less than 1 g kg−1, and
given the approximately thousand-fold increase in density
in the condensate versus vapour phases (for typical atmo-
spheric pressures) this implies that the volume fraction of
condensate in the atmosphere is of order 10−6. The dilute-
ness of condensate can challenge the concept of an equilib-
rium thermodynamic system, as on the Kolmogorov scale the
condensate is not continuously distributed. To get around
this difficulty one often imagines an air parcel as being on
the scale of around 1 m3. Strictly speaking volumes of air this
large cannot be thought of in terms of a single temperature,
but the error of this approximation is typically much less
than those associated with other approximations invoked in
the description of such systems.

2.1.2 A notational challenge

A particular challenge of describing moist atmospheric sys-
tems is finding a suitable notation. Many symbols are over-
loaded. As an example, the symbol v is often used to denote
the specific volume in thermodynamic systems, or the second
component of the velocity vector in fluid dynamical systems.
The roman form, “v” of the same letter is used to denote,
in the form of a subscript “vapour”, and sometimes “virtual”.
The symbol “s” may be used to denote static energy, entropy,
or in subscript form a saturated state, or process, or simply
a surface quantity.

This chapter is not the proper place to attempt to sys-
tematically overhaul an overloaded notation, but some slight
deviations are introduced. For instance, density temperature
terminology is favoured over the more old fashioned “virtual"
temperature, and script fonts are introduced for many of the
quantities of classical thermodynamics, e.g., M and V , for
mass and volume. Following the usual convention, lower case
denotes a mass specific, or intensive quantity, so that v de-
notes the specific volume, V /M . An exception to this rule is
in the case of the specific mass, which following conventions
in the atmospheric sciences is denoted by q, rather than m.
δQ, however, denotes heating. Because no special symbol for
the specific heating is introduced, no conflict arises with the
use of q to denote specific mass.

For entropy, the text defers to the thermodynamic tradi-
tion and adopts the symbol S , or s for the specific form.
Clausius is said to have adopted the symbol S for entropy
in honour of Carnot, a tradition this chapter upholds. Like-
wise the classical notation is also used to denote enthalpy by
H , or h for the specific form. In some later chapters s and
h may, for traditional reasons, be used to represent the dry
and moist static energy respectively, what in this chapter is
denoted by ηd and ηe. But in these chapters there should
be no risk of confusion with the entropy and enthalpy. The
Gibbs potential is given by G, whose specific form g is not
to be confused with g the gravitational acceleration. Follow-
ing these conventions a subtle distinction arises between the
script font of particular symbol and the italic font, e.g., ‘v ’
denotes specific volume, rather than v. The text also reserves
the italic font for variables, i.e., measures of something, such
as t for time. Abbreviations, even if only one letter long,
are denoted by the roman font. Hence qt is the total water
specific humidity, and the subscript ‘t’ is written in the ro-
man font because in this usage it abbreviates total water. In
an attempt to minimise subsequent confusion, the common
subscript abbreviations used in this chapter, and throughout
the book, are presented in Table 2.2.

2.1.3 Equation of state

Taking an air-parcel to be comprised of an ideal mixture of
ideal gases, perhaps in the presence of condensate, the equa-
tion of state is that for an ideal gas of variable composition,
such that

p = pd + pv =

(
MdRd

V
+

MvRv

V

)
T, (2.2)
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Table 2.2. Subscript notation

d dry air
v water vapour
l liquid water
i solid water (ice)
c condensate
t total water
s saturated state, or process
e equivalent (all condensate) reference state
` liquid-free (all vapour) reference state
p isobaric process
0 some specified reference state

where Rd and Rv are the specific gas constants of “dry air”
and water vapour respectively. Using the subscript “c” and
subscript “t” to denote the total amount of condensate, and
total amount of water (irrespective of phase) respectively
(Table 2.2), the specific mass of total water can be expressed
as

qt = qv + ql + qi = qv + qc. (2.3)

Defining the density of the gaseous/vapour mixture as ρ =

MV−1 allows one to formulate the equation of state as

p = ρRT (2.4)

where the specific gas constant depends on the amount and
distribution of water,

R = Rd + qvRv − qtRd. (2.5)

The ratio of the gas constants often arises, albeit in different
forms, which makes it helpful to define two constants that
depend only on this ratio:

ε1 =
Rd

Rv
≈ 0.622 and ε2 =

(
1

ε1
− 1

)
≈ 0.608. (2.6)

Many derivations are aided by simply accepting that the
gas constants and specific heats depend on the composition
of the fluid. The density temperature, Tρ

p = ρRdTρ where Tρ = T (1 + ε2qv − qc) (2.7)

makes the sensitivity to composition explicit. In the absence
of water the density temperature is the air temperature, oth-
erwise it can be interpreted as the temperature of a dry air
parcel having the same density and pressure as the given air
parcel.

In the older literature the density temperature is often
called the virtual temperature, although some authors use
both terms, distinguishing between them based on whether
or not condensate effects are included. Here the term density
temperature is preferred as it makes physical reference to the
specific quantity that this particular temperature is meant
to help describe.

Given the pressure, the density temperature determines
the density and thus is important to the concept of the buoy-
ancy, or effective acceleration, of a fluid parcel in the presence
of a gravitational field. From a scale analysis of the vertical
momentum equation the buoyancy of a fluid parcel can be

measured by the extent to which its density differs from a
background or reference density. For instance, assume that
locally the density is given in terms of a deviation from such
a reference state density, ρ0 such that

ρ = ρ0 + ρ′ (2.8)

where the ′ denotes a deviation. In this case the buoyancy, b
has units of acceleration and can be defined as

b ≡ −g ρ
′

ρ0
≈ g

(
T ′

T0
+
R′

R0

)
= g

T ′ρ
Tρ,0

. (2.9)

The approximation of the buoyancy in terms of the density
temperature follows from the assumption that the relative
change in pressure is small compared to the relative change
in density, i.e., p′/p0 � T ′/T0, and thus Eq. (2.7) identifies
the density temperature as the dynamically relevant variable
for describing fluid motions.

2.1.4 The first law and its consequences

For an atmospheric system it proves useful to use tempera-
ture and pressure to describe the state of the system. The
choice of pressure rather than volume, as is more customary
in the description of laboratory systems, arises because the
pressure is fixed externally by the weight of the surround-
ings.1

With pressure as a thermodynamic coordinate the First
Law becomes

dH = δQ+ V dp (2.10)

where δQ denotes an infinitesimal amount of heat imparted
upon the system, and H is the enthalpy, or heat function.
Because H is an extensive variable, its specific value, h , can
be written as a linear combination of the mass weighted con-
tribution of the constituent enthalpies:

h = qdhd + qvhv + qlhl + qihi. (2.11)

The laws of thermodynamics only constrain changes in en-
thalpy, which means that the actual value of enthalpy can
only be given relative to a reference value, and can thus dif-
fer depending on what one adopts for this reference value.
In Eq. (2.11) the reference state enthalpies are hidden in the
specific enthalpies of the various constituents.

Different phases of matter, for instance liquid water ver-
sus water vapour, differ in their specific enthalpy, so that
phase changes imply a change in the enthalpy of the system,
which may be used to do work or as heat lost to the envi-
ronment. Hence these are often referred to as latent heats,
i.e., an amount of heat that is realised only through a change

1 As a result the isobaric specific heat of some substance x is
written as cpx . Dropping the subscript ‘p’ simplifies the notation,
but may cause confusion in a few places. For example, the iso-
baric specific heat for vapour, cpv , can be mistaken for cv , which
is commonly used to denote an isometric specific heat, i.e., one
at constant volume. But as indicated above, isometric processes
are rarely relevant to the atmosphere, and are therefore not in-
troduced. Keeping this in mind should help minimise confusion.
Table 2.3 provides values of the specific heats for dry air and the
different phases of water.
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of phase, but is otherwise latent. For water, with one crys-
talline (ice) phase these phase-change enthalpies are, in spe-
cific form, denoted as

`v = hv − hl (2.12)

`l = hl − hi. (2.13)

The first, the specific enthalpy of vaporisation, is the en-
thalpy required to vaporise a unit mass of liquid, often it
is called the latent heat of condensation. The second, the
specific enthalpy of fusion, is the enthalpy released by the
freezing of a unit mass of liquid, and is often called the la-
tent heat of fusion. Both are positive and their sum is the
specific enthalpy of sublimation, `s. The naming convention
is not entirely consistent, but follows historical usage

Usually, it is assumed that the specific enthalpies depend
only on T . Actually this is a property of ideal fluids and
perfect gases, the latter directly from Joule’s classic free ex-
pansion experiment, so this assumption is equivalent to ap-
proximating the atmosphere as a perfect gas and condensate
as an ideal fluid, which for practical purposes is a very good
approximation. In this case, for some constituent x,

dhx = cpxdT, (2.14)

where the constant cpx is called the isobaric specific heat for
the constituent x in its gaseous phase. Thus it follows that

d`v = (cpv − cl)dT, (2.15)

which is known as Kirchoff’s relation and also holds for the
other phase-change enthalpies. For the various phases of wa-
ter and for dry air it is also safe to assume that cpx is con-
stant, at least within the homosphere (below 100 km. In this
case,

hx(T ) = hx(T0) + cpx (T − T0) (2.16)

and,

`v(T ) = `v(T0) + (cpv − cl) (T − T0) . (2.17)

Because cpv is less than cl this implies that the enthalpy of
vaporisation decreases with temperature, and would (if the
specific heats really were temperature invariant) vanish at a
critical temperature

From the above discussion it may have been inferred, that
in so far as we speak of the enthalpy of a system, or some
other quantity that might depend on the system enthalpy, we
must specify what we have adopted for the reference state.
In a system that does not admit phase changes, there is little
need to take care as to what one assumes for the reference
state enthalpies, and this is more of a formal requirement.
If phase changes are permitted, differences in the reference
enthalpies accompany changes in phase of the matter, and
demand more care.

2.1.5 Enthalpies

In the literature one often encounters closed form expressions
for the enthalpy, or related variables like static energies. It is
often not clear that these expressions depend on an assumed
reference state. Historically such expressions have been de-
rived for liquid-gas systems. Below these expressions are de-
rived in a manner that makes the assumed reference state

Table 2.3. Common thermodynamic constants, where
cpmathrmx denotes the isobaric specific heat of either dry
air, vapour, liquid or ice. Isobaric specific heat capacities
for water phases given at the triple point. Reference val-
ues of entropy and phase-change enthalpies are given at
T = 273.15 K and at the standard pressure, pθ=1000 hPa.

Quantity Value Unit
Rd 0.2870 kJ kg−1 K−1

Rv 0.4615 "
cpd 1.004 "
cpv 1.884 "
cl 4.220 "
ci 2.097 "
sd,ref 6.783 "
sv,ref 10.321 "
lv,ref 2500.7 kJ kg−1

lf,ref 333.4 "

explicit, and in so doing clarifies the relationships among the
different enthalpies. To align the definitions with the histor-
ical development of the subject it is also assumed that there
is only one condensed phase, that corresponding to liquid.
A more general treatment, to account for a solid phase, is
presented in §2.1.11.1.

For a closed system δqt = δqd = 0. These constraints
reduce the degrees of freedom in Eq. (2.11) and are accounted
for by rewriting Eq. (2.11) in terms of qt. To do so requires
substituting 1− qt for qd and eliminating either qv, or ql in
favour of qt. Eliminating ql and making use of the definition
of the phase-change enthalpies allows Eq. (2.11) to be recast
as:

h = (1− qt)hd + qthl + qv`v. (2.18)

For some (not-necessarily infinitesimal) perturbation about
a reference state, the enthalpy change can thus be written as

∆h = (1− qt)∆hd + qt∆hl + ∆(qv`v). (2.19)

Assuming a reference state temperature, T0,e such that all
the condensate is in the form of liquid (which can only be
approximately true), yields the following expression for the
enthalpy of a reference state,

h0,e = (1− qt)hd

∣∣
0,e

+ qthl

∣∣
0,e
. (2.20)

By fixing the (arbitrary) values of the constituent specific
enthalpies at the reference temperature to be

hd(T0,e) = cpdT0,e and hl(T0,e) = clT0,e, (2.21)

the enthalpy, h = ∆h+ h0,e can be written as

he = cpeT + qv`v. (2.22)

Here the subscript ‘e’ has been added to the enthalpy as a
reminder of the reference state with respect to which it has
been defined, and

cpe = cpd + qt(cl − cpd) (2.23)

denotes the specific heat of the system in this reference state.
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Alternatively eliminating qv in Eq. (2.11) and adopting
a reference state temperature, T0,` wherein all the water is
in the vapour phase with the constituent specific enthalpies
fixed so that

h0,` = (1− qt)hd

∣∣
0,`

+ qthv

∣∣
0,`

= cp`T0,` (2.24)

where

cp` = cpd + qt(cpv − cpd), (2.25)

yields another form for the enthalpy. It is called the liquid-
water enthalpy and is denoted by subscript `:

h` = cp`T − ql`v. (2.26)

The subscript “e” or “`” serves as a reminder of which ref-
erence state has been adopted. The former, which we call
the “equivalent” reference state, is somewhat more common,
both because it has a somewhat longer history and because
it has some advantageous properties – although thermody-
namically, particularly if the ice phase is considered, it makes
less physical sense. The two enthalpies, he and h` differ from
one another by a constant, reflecting their different reference
states.

2.1.6 Entropy

The Second Law postulates the existence of an entropy state
function, S , defined by the property that in equilibrium the
state of the system is that which maximises the entropy func-
tion. Such a function has the property that δQ ≤ TdS with
the equality sign holding for reversible transformations. For
this case the First Law can be written in the form

dH = TdS + V dp, (2.27)

thereby identifying the entropy and the pressure as the in-
dependent variables in the Enthalpy formulation.

As an extensive state function the entropy, like the en-
thalpy can be decomposed into its constituent parts:

s = qdsd + qvsv + qlsl + qisi. (2.28)

Unlike the enthalpy the absolute entropy is not arbitrary
to within a constant value. The Third Law specifies that
the entropy must go to zero as T goes to zero. Hence the
reference entropies cannot be arbitrarily specified. This has
consequences for the description of irreversible processes.

For an ideal gas, such as dry air, the specific form of
Eq. (2.27) can be integrated to yield an expression of s writ-
ten in terms of a reference entropy, so that for instance,

sd = sd,0 + cpd ln(T/T0)−Rd ln(pd/p0), (2.29)

where sd,0 is the reference entropy of dry air at the tempera-
ture T0 and pressure p0. As in the derivation of an expression
for the enthalpy, it is assumed that the specific heats are
constant between T and T0. An analogous expression can
be derived for sv. For the condensed phases the condensate
is assumed to be ideal so that changes in pressure do not
contribute to the entropy. Reference values for the entropy
of dry air and water vapour at standard pressure and tem-
perature are given in Table 2.3. Reference entropies of the
condensed phases can be derived from the reference values

of the phase-change enthalpies and the reference value for
water vapour.

A general expression for the composite entropy can thus
be derived with respect to the chosen reference state. Here
again the basic ideas are developed for a system that does
not allow a solid (ice) phase. Relative to a system in an
‘equivalent’ reference state, wherein all the water mass is
in the condensed phase and for which the pressure is the
standard pressure, pθ=1000 hPa,

s = se,0 + cpe ln(T/T0)−Re ln(pd/pθ) + qv(sv − sl), (2.30)

with se,0 = sd,0 + qt(sl,0 − sd,0), and cpe defined as before.
The only gas-phase constituent in the reference state is dry
air, hence the gas constant Re = (1 − qt)Rd. The value of
se,0 is thus determined by the amount of water in the system
and the reference state temperature and pressure, denoted
by T0 and pθ respectively.

There are two ways to look at Eq. (2.30). Given a com-
pletely specified reference state, it provides an expression for
the entropy. This was the sense in which it was derived. Al-
ternatively, one can use this equation to ask what would the
reference state temperature need to be, for the system in the
reference state configuration (as specified through the pres-
sure, amount and distribution of water mass) to have the
same entropy as in the given state. In this case se,0 is set
equal to s and Eq. (2.30) becomes an equation for T0 con-
ditioned on the choice of reference state. For the choice of
the equivalent reference state, this alternative application of
Eq. (2.30) leads to the interpretation of T0 as the tempera-
ture the system would attain if all of its water is reversibly
condensed, and then separated mechanically from the gas
but maintained in thermal equilibrium with the dry air as
the system is brought reversibly to the reference states pres-
sure – a process that is easier to imagine than to realise.

In the absence of ice-processes, an expression correspond-
ing to Eq. (2.30), but for the liquid-free reference state, fol-
lows analogously as

s` = s`,0 + cpe ln(T/T0)− qdRd ln(pd/pθ)− qvRv ln(pv/pθ)

− ql(sv − sl), (2.31)

with s`,0 = sd,0 + qt(sv,0 − sd,0). Physically the reference
state temperature is that which the system would attain if
reversibly brought to the reference state pressure (by conven-
tion pθ) assuming that the vapour pressure is less than the
saturation vapour pressure at this temperature, so that any
condensate that may initially be in the system transforms to
vapour.

2.1.7 The Clausius-Clapeyron equation

For a closed isobaric and isothermal system it follows from
Eq. (2.27) that for a reversible process

0 = d
(
H − TS

)
, (2.32)

which introduces the Gibbs free-energy, or Gibbs Potential,
as G = H − TS , i.e., the energy available to do work in
an isothermal and isobaric system. From this definition it
follows that the difference in the Gibbs energy of two con-
stituents is related to the differences in their enthalpies and
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entropies, so for example

gv − gl = hv − hl − T (sv − sl) (2.33)

From the postulates of thermodynamics, whereby in equi-
librium H and T adopt values that maximise S , it follows
that the Gibbs free-energy of a system in equilibrium is a
minimum. The condition that, for a closed isothermal and
isobaric system, the Gibbs free energy is a minimum deter-
mines the partitioning between two phases of matter, say
liquid water and water vapour, in equilibrium, whereby for
this equilibrium partitioning the vapour state can be said
to be saturated, a condition sometimes denoted by subscript
‘s’. The minimisation of the free energy determines the phase
partitioning because it requires that the specific Gibbs en-
ergy of each phase must be equal, i.e., gv = gl, otherwise
a redistribution of the mass between the phases could lower
the total Gibbs energy. This property can be used to de-
rive the temperature dependance of the phase partitioning
as follows.

If the temperature of the system changes, this implies a
change in the Gibbs energy, such that

dg = dh − sdT − Tds = vdpv − sdT, (2.34)

likewise

dgv = vvdpv − svdT and dgl = vldpv − sldT. (2.35)

But because the maintenance of equilibrium requires that
dgv = dgl it follows that for such a transformation the
vapour pressure changes with temperature as,

dpv =
sv − sl
vv − vl

dT. (2.36)

This is the Clapeyron equation describing how vapour pres-
sure changes with temperature.

Clapyeron’s equation can be cast in a simpler form by
substituting for vv from the ideal gas law in the denominator
of the fraction on its rhs, and additionally noting that vl �
−vv so that vv − vl ≈ vv, and by rewriting the entropy
differences in terms of the vaporisation enthalpy. This latter
step is accomplished by realising that as far as the numerator
on the rhs of Eq. (2.36) is concerned, for a saturated system
gv = gl, which from Eq. (2.34) implies sv − sl = `v/T. On
the basis of these insights Clausius showed that Clapeyron’s
equation can be written in the form

d (ln pv) ≈ `v
RvT

d (ln T ), (2.37)

which has come to be known as the Clausius-Clapeyron equa-
tion. Fig. 2.1 shows that the Clausius-Clapeyron equation
very effectively delimits the distribution of water through-
out the atmosphere. The atmosphere sits atop a reservoir of
water, which endeavours to bring the air above it into satu-
ration, but If the amount of moisture exceeds the saturation
value it condenses, and condensate is effectively removed by
precipitation from the system. Hence the saturation specific
humidity limits the amount of water in the atmosphere, as
seen in Fig. 2.1. Because Eq. (10.1) so strongly controls the
distribution of water in the atmosphere, if one had to single
out a particular equation as being the most important for the
functioning of Earth’s climate, it would be this equation.

Figure 2.1 Saturation vapour pressure over liquid (solid line)
and ice (dashed line). Coloured circles and lines show vapour
pressure in the atmosphere, binned according to temperature for
different pressure levels (900 hPa, black; 700 hPa, blue, 500 hPa,
orange, 300 hPa, red). At T = 0 ◦C the saturation vapour
pressure is 610.15 Pa. At T = −30 ◦C the saturation vapour
pressure over liquid water is 50.8 Pa as compared to 38.0 Pa over
ice at the same temperature. Saturation with respect to liquid
for T<0 ◦C is relevant because super-cooled water is often
present in the atmosphere, with homogeneous nucleation of ice
particles first occurring at about T = −38 ◦C.

2.1.8 Potential temperatures

In the atmospheric sciences there is a tradition of using tem-
perature variables to measure the system’s entropy. These
are usually called potential temperatures as they measure
the temperature the system would have to have in a given
reference state, for the entropy of this state to be identical
to that of the given state. It thus follows that these temper-
atures are invariant under an isentropic process, but their
properties and absolute values depend on the choice of the
reference state.

For the equivalent reference state, equating θe with the
value of T0 chosen so that se,0 = s in Eq. (2.30) implies that

cpe ln θe = cpe lnT −Re ln(pd/pθ) + qv(sv − sl), (2.38)

with pθ=1000 hPa denoting standard pressure.
Eq. (2.38) can be recast in a more familiar form by ex-

pressing the pressure of the dry air in terms of the total
pressure and the specific humidity, and by expressing the
vapour-liquid entropy difference in terms of the latent heat.
For the former,

pd = p

(
Re

R

)
. (2.39)

For the latter, by expressing the entropy difference at the end
of Eq. 2.38) relative to the vapour entropy in saturation, so
that

sv − sl = sv − ss + ss − sl
= sv − ss + (`v/T ). (2.40)
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Here the last expression arises because the condition of phase
equilibrium is the equality of the specific Gibbs enthalpies of
the phases, so that sv − sl = (hv − hl)/T = `v/T. From
Eq. (2.29) the difference between the vapour and saturation
vapour entropy is measured by the difference in the partial
pressures

sv − ss = −Rv ln

(
pv

ps

)
(2.41)

where pv/ps defines the relative humidity. So that with
Eqs. (2.39) - (2.41), Eq. (2.38) can recast as

θe = T

(
pθ
p

) Re
cpe

Ωe exp

(
qv`v
cpeT

)
. (2.42)

Here the term

Ωe =

(
R

Re

) Re
cpe

(
pv

ps

)−qvRv
cpe ≈ 1 (2.43)

has been introduced as a separate factor because by virtue
of the smallness of qt (� 1) it depends only very weakly
on the thermodynamic state. Eq. (2.42) is a complicated ex-
pression presented in all its fullness, but it is rarely used in
practical applications. For many purposes far simpler expres-
sions captures much of the essential physics. These, and the
assumptions they imply, are discussed in § 2.1.11.2.

Choosing instead T0 so that the liquid-free reference state
has the same entropy as the given state introduces the liquid-
water potential temperature as

θ` = T

(
pθ
p

) R`
cp`

Ω` exp

(
− ql`v
cp`T

)
, (2.44)

where

Ω` =

(
R

qdRd

) qdRd
cp`

(
R

qvRv

) qvRv
cp`

(2.45)

with R` = Rd(1 + ε2qt), cp` is given by Eq. (2.26) and once
more pθ is the standard pressure. Here too, simpler expres-
sions that provide a reasonably good approximation to θ`
are discussed in § 2.1.11.2.

In the absence of saturation a quantity resembling the fa-
miliar dry potential temperature arises

θ = T

(
pθ
p

)R/cp
, (2.46)

where R and cp depend on composition of the fluid, and
hence qt. For the particular case of dry air, we denote θ by
θd as a reminder that cp = cpd and R = Rd. The non-
dimensional pressure describing the proportionality between
temperature and potential temperate arises frequently and
is known as the Exner function,

Π ≡
(
p

pθ

)R/cp
. (2.47)

Unlike θ, both θe and θ` are conserved under isentropic
transformations of moist air in a way that accounts for the
isentropic phase changes between vapour and liquid. For this
reason they are often adopted as thermodynamic variables.
They differ from one another in that moisture contents, par-
ticularly in the lower troposphere cause θe to be substantially

larger than θ, while θ` is typically only slightly less, if at all,
than θ by virtue of the typically small amounts of conden-
sate suspended in the air. These differences are most readily
evident by recognising that many of the terms in Eqs.(2.42)
and (2.44) only contribute small corrections to much simpler
forms of the equations, so that

θ < θe ≈ θ exp

(
qv`v
cpdT

)
(2.48)

and

θ ≥ θ` ≈ θ exp

(
−ql`v
cpdT

)
. (2.49)

Further discussion of the advantage of one or the other choice
of potential temperature is provided at the end of §2.1.11.3

2.1.9 Static energies

In an atmosphere absent horizontal pressure gradients, and
with the vertical distribution of pressure in hydrostatic bal-
ance, the change in pressure following parcel displacements
follows the geopotential, φ, as vdp = −dφ. In this case
the adiabatic (literally no heating) form of the First Law,
Eq. (2.10), becomes

0 = d
(
h + φ

)
. (2.50)

This defines the static energy, η = h + φ, as an adiabatic in-
variant of parcel displacements in such an atmosphere. The
name arises because η measures the total energy a parcel has
were it static – the kinetic energy is not accounted for. In
analogy to the potential temperatures it could just as well
be called the potential enthalpy, i.e., the enthalpy a parcel
would have were it adiabatically brought to the surface given
some specification of the reference enthalpy. The restriction
that η is only conserved for an atmosphere in which pressure
varies hydrostatically in the vertical, and not at all horizon-
tally might seem restrictive, but the vertical distribution of
pressure is (especially on larger scales) well approximated
by hydrostatic balance and at least in the tropics horizontal
pressure gradients are very small. So that in the more gen-
eral setting η is very nearly conserved and is often treated
as if it were conserved.

Neglecting for a moment corrections implied by the failure
of the above assumptions, or the effects of an ice phase, the
form of the static energy depends on which reference state
the enthalpy is referred to. Adopting the equivalent reference
state, in which case h = he leads to the following definition
of the static energy

ηe = cpeT + `vqv + φ. (2.51)

For the liquid-free reference state, h = h` and

η` = cp`T − `vql + φ. (2.52)

The static energy defined in terms of the equivalent reference
state, ηe, is called the moist static energy; η` is called the
liquid-water static energy.

Both ηe and η` are exactly conserved for ic transforms
of the moist system if pressure only varies vertically, and
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Figure 2.2 The atmosphere as a heat engine, where air is
heated by an amount Q1 over the ocean at some effective
temperature T1 and looses energy (Q2) radiatively at some
cooler temperature, T2. It is assumed to ascend and descend
adiabatically.

then, hydrostatically. In the absence of water both become
identical to the dry static energy,

ηd = cpdT + φ. (2.53)

The names, moist static energy versus equivalent potential
temperature or the liquid water static energy and liquid wa-
ter potential temperature, emerged historically and not in
relation to one another. Because the equivalent reference
state contains all the moisture in the condensed form, a more
informative terminology would be to refer to the condensa-
tion and evaporation potential temperatures (Eqs. (2.42) and
(2.44)) and the condensation and evaporation potential en-
thalpies (Eqs. (2.51) and (2.52)) respectively.

2.1.10 Heat engines and maximum entropy
production

2.1.10.1 Heat engines

Many thermodynamic processes can be interpreted in terms
of a heat engine, which converts heat into work. The atmo-
sphere is one of them. The limits the amount of work that
can be done by a heat engine to that which can be done by a
reversible heat engine, i.e., the Carnot Cycle. Hence the idea
of heat engines arises in many places as a way to bound the
work that can be done by a system.

A Carnot cycle, shown schematically in a fashion appli-
cable to the atmospheric circulation (Fig. 2.2), is an ideal
process composed of four stages. In the first stage the sys-
tem extracts an amount of energy Q1 from a reservoir at
some temperature T1 increasing the entropy by the amount
dS = Q1/T1. In the second stage the system performs an
amount of work, W12 > 0 on its environment without a
change in entropy, until it reaches the temperature of a sec-
ond reservoir at some temperature T2, where T2 < T1. In the
third stage the system looses an amount Q2 of energy to its
environment at a temperature T2, decreasing its entropy by
the amount Q2/T2. Finally, in the fourth stage an amount
W21 of work is done on the system to isentropically return it
to its initial state at temperature T1. For a reversible process
the entropy gained in the first stage equals what is loss in
the third stage, so that Q2/T2 = Q1/T1. More generally, if

entropy is produced by irreversible processes, then

Q1

T1
=
Q2

T2
−∆Sirr, (2.54)

where ∆Sirr > 0 accounts for the entropy by irreversible
processes.

The net work done over the course of one cycle is given by
W = W1,2 −W2,1. By conservation of energy

W = Q1 −Q2 = Q1

(
1− T2

T1

)
− T2∆Sirr. (2.55)

The term in the parentheses defines the efficiency of the
Carnot Cycle, it defines how much of the heat extracted from
the warmer reservoir can be converted to work in an irre-
versible process. From the Second Law, the entropy produc-
tion by irreversible processes is positive, so that irreversible
processes further limit how much of the energy extracted
from the warm reservoir can be used to do work. The atmo-
sphere does not do work on the Earth or space, but one can
imagine the system doing work by converting heating into
the kinetic energy of the circulation (as schematically shown
in Fig. 2.2), which is then removed from the system (either
by dissipation or through conversion to another form of en-
ergy, for instance wind-power) to maintain a steady state.

More generally one can apply the question of how much
work can be done to the question of the magnitude of the
irreversible entropy production by a variety of processes If
no work is done, or any work that is done simply balances
dissipation, and the system is stationary, Q2 = Q1 = ∆Q,

and from Eq. (2.54)

∆Sirr = ∆Q

(
1

T2
− 1

T1

)
. (2.56)

An equation of this form can thus be used constrain how
much entropy production the system can support. For in-
stance, when applied to the tropical circulation one can
think of energy being added to the system through sur-
face fluxes, at T1 = Tsfc and energy being lost to space
through radiation, and en effective radiative temperature of
Trad. Taking ∆Q to be about 240 W m−2 Trad = 255 K and
Tsfc = 300 K determines the irreversible entropy production
to be 0.14 W m−2 K−1. The challenge then becomes to asso-
ciate ∆Sirr with specific processes in the hope that Eq. (2.56)
can be used to bound the strength of these processes.

As an example, assume that the dissipation of kinetic en-
ergy, to create power for wind-turbines, was the main source
of irreversible entropy production. Then the Carnot cycle
could be used to bound the strength of the circulation driven
by adding energy to the fluid at some temperature, T1, and
extracting it at a temperature T2. All that would be needed
would be a relationship between the rate of dissipation, and
the strength of the circulation.

The above discussion has taken for granted that Q is given.
In principle the amount of heating depends also on the circu-
lation, which extracts energy more or less efficiently from the
heat-reservoir, i.e., stronger winds increase the flux of mois-
ture and internal energy from the surface. Such system’s can
arrive at stationary solutions which differ in terms of the
amount of power they produce. Often it is found that nature
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tends to prefer the solutions that maximise power, an idea
closely related to the idea of maximum entropy production.

2.1.10.2 Entropy production by irreversible processes

The relationship between the potential temperatures and
entropy becomes evident upon substitution of θe back into
Eq. (2.30), whereby

θe = T0 exp

(
s − se,0
cpe

)
, (2.57)

wherein T0 now adopts some fixed value which also fixes se,0
independently of the value of s . The differential of Eq. (2.57)
is

cpe
dθe
θe

= cpe
dT0

T0
+ ds − dse,0 −

(
s − se,0
cpe

)
dcpe , (2.58)

which could have just as easily been formed by taking the
differential of Eq. (2.30).

For a closed system qt is constant, hence composition de-
pendent reference properties (se,0, cpe), are (along with T0)
also constant, so that

ds = cped(ln θe) = cp`d(ln θ`). (2.59)

However if the relative composition of the system changes,
through a change in qt, then those reference properties, which
depend on the composition of the system, also change and
the above equalities no longer hold. Instead,

ds = cped(ln θe) +
[
(cl − cpd) ln(θe/T0) + (sl,0 − sd,0)

]
dqt.

(2.60)
From this equation the importance of mixing of water sub-
stance arises both directly, through the term dqt, and indi-
rectly though its contributions to changes in ln θe.

Even in a closed system, in which no work is done at
the boundaries, the approach to equilibrium, for instance
by mixing air masses at different temperatures, or with dif-
ferent amounts of constituent matter, because it happens in
a state of disequilibrium, irreversibly increases the entropy.
In a system with condensate, or experiencing phase changes,
evaporation in subsaturated air, or condensation in supersat-
urated air is also a non-equilibrium processes, and associated
with an irreversible production of entropy. Also dissipative
processes, for instance the dissipation of kinetic energy also
is a source of entropy, and enthalpy. As it turns out, apart
from radiative processes, most of the entropy production in
the atmosphere is associated with the mixing of moisture,
and that fraction which is associated with the dissipation of
kinetic energy comes from a surprising source. Hydromete-
ors falling through the atmosphere reach a terminal velocity
when the drag they experience balances their gravitational
acceleration. The drag represents work being done on the
fluid by the hydrometeors, work which is dissipated in the
wake of the droplet and which is substantially larger than the
dissipation of kinetic energy from large-scale fluid motions.

2.1.11 Further thoughts on thermodynamic
variables

2.1.11.1 Incorporating the ice phase

In the above discussion the ice-phase was neglected because
the static energies and the potential temperatures are usu-
ally defined, for historical reasons, to only incorporate the
liquid phase. Neglecting the ice phase also makes it easier to
understand the basic concepts underlying the construction
of conserved moist thermodynamic variables such as θe or
η`.

Once the basic idea of the moist entropies and enthalpies
is clear however, it is possible to generalise their definition to
incorporate the ice-phase. Doing so results in the following
generalisation of Eqs (2.22) and (2.26) so that the static
energies become

ηe = cpeT + `vqv − `fqi + φ, (2.61)

η` = cp`T − `vql − `sqi + φ. (2.62)

The presence of ice also encourages the definition of an ice-
only reference state, wherein hd,0 = hi,0 = 0 so that for a
system in thermal equilibrium

ηi = ciT + `sqv + `fql + φ. (2.63)

with ci = cpd + qt(ci − cpd). This form of the moist static
energy is thermodynamically more sensible than (2.61) as
a reference state in which all the water exists as solid (ice)
condensate is asymptotically more accessible than the ‘equiv-
alent’ state wherein all water is in the liquid form. The ref-
erence state corresponding to (2.62) is even easier to work
with as it is accessible absolutely, not just asymptotically,
i.e., there are (atmosphere-like) temperatures at which all
the condensate will exist as vapour, where as all of the vapour
is extinguished in favour of ice only as the temperature goes
to zero.

Introducing expressions for the potential temperatures
that account for the ice phase is somewhat more involved.
Analogous to the generalisation of the enthalpy implicit in
Eq. (2.61), the expression for the entropy becomes

s = se,0 + cpe ln(T/T0)−Re ln(pd/pθ)

+ qv(sv − sl)− qi(sl − si). (2.64)

The entropy difference between the condensed phases is cal-
culated by assuming each is an ideal condensate, so that its
entropy is independent of pressure. Integrating the entropy
for each phase from its value at the triple-point tempera-
ture, T∗, and noting that at the triple point sl − si = `f/T∗,
it follows that

sl − si =
`f
T∗

+ (cl − ci) ln

(
T

T∗

)
. (2.65)

Given this expression for the entropy difference between the
condensed phases the expression for the generalisation of the
equivalent potential temperature to account for the ice phase
thus introduces an additional multiplicative factor(

T

T∗

)−qi (cl−ci)cpe

exp

(
− qi`f
cpeT∗

)
. (2.66)
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in the definition of θe. With this additional term the ice-
equivalent potential temperature becomes

θe = T

(
pθ
p

) Re
cpe

(
T

T∗

)−qi (cl−ci)cpe

Ωe exp

(
qv`v
cpeT

− qi`f
cpeT∗

)
.

(2.67)
which reduces to unity, as expected, in the absence of ice.

2.1.11.2 More approximate descriptions

The application of the Laws of thermodynamics to any real
system necessarily involves approximations. The atmosphere
is no exception. Even as developed up until this point a great
number of approximations have been made. Not only have
ideal mixtures of ideal constituents been assumed, but the
condensate phase been assumed to occupy zero volume. Some
assumptions have not even been mentioned, for instance the
neglect of surface effects or of the effects of impurities in the
condensate phase; electric dipole and magnetic moments of
the matter under consideration have also been neglected.

Of the assumptions that have been made, many are ten-
able only in a certain range of temperatures. For example, if
the specific heats were actually constant irrespective of tem-
perature then Kirchoff’s relation and the requirement that
the vaporisation enthalpy be zero at absolute zero, implies
that `v,0 = (cl − cpv )T0, which from Table 2.3 is clearly
not the case. Variations in the specific heats with tempera-
ture are crucial to explain the value the enthalpy of vapor-
isation attains at ambient temperatures. For a perfect gas
the specific heats are related to the degrees of freedom of a
molecule over which thermal energy is equally distributed.
However not all the degrees of freedom of molecules in the
atmosphere are accessible at all temperatures, and even for
simple molecules degrees of freedom are frozen out at lower
temperatures, which explains why the specific heat for the
diatomic constituents of dry air, such as N2 and O2 are not
influenced by vibrational degrees of freedom, which only be-
come important at much higher temperatures.

Notwithstanding the departures from exactness entailed
by all of the above approximation, for many applications the
book-keeping entailed by a fully two component description
of the atmosphere as a mixture of water and dry air may un-
necessarily complicate the physical description and obscure
physical relationships. For the study of clouds and cloud pro-
cesses latent heating is essential, but for many questions the
influence of moisture on the specific heat (and even the gas
constant) may not be important. With the assumption that
cl = cpv = cpd

ηe ≈ ηd + `v,0qv (2.68)

η` ≈ ηd − `v,0q`. (2.69)

Here the vaporisation enthalpy has been replaced by its value
at the triple point consistent with the fact that in assuming
cpv = cl Kirchoff’s relation implies that `v is independent of
temperature. For many purposes, as shall be evident through
the remainder of this book (and even the later sections of
this chapter). Equations (2.68) and (2.69) are preferred as
they simplify the analysis and more clearly illustrate physical

ideas that don’t depend on differences in the gas constants
and specific heats.

Similarly simple expressions for the potential tempera-
tures require two additional assumptions: (i) difference be-
tween the gas constants of water vapour and dry air can
be neglected; (ii) moisture variations are only important in
so far as they multiply the phase-change entropy. Adopting
these additional assumptions leads to the the following ap-
proximations to the potential temperatures

θ ≈ θd (2.70)

θe ≈ θd exp

(
qv`v
cpdT

)
(2.71)

θ` ≈ θd exp

(
−ql`v
cpdT

)
, (2.72)

and in so doing helps highlight the close relationship between
the potential temperatures and the static energies.

In addition, exact expressions for the saturation vapor
pressure, over liquid or solid (ice) surfaces to not exist. This
has given rise to a rich literature of approximations (as re-
viewed by Murphy and Koop, 2005). A formula that for many
purposes strikes a good balance between accuracy and sim-
plicity, was suggested by O Tetens in 1930, and reformulated
later by Bolton (1980) as

ps = 6.112 exp

[
17.67(T − 273.15)

T − 29.65

]
. (2.73)

For 238.15 K < T < 308.15 K, Eq. (2.73) differs by less than
0.5 % from the more accurate, albeit much more complex,
formulations, reviewed by Murphy and Koop. It is similarly
accurate to what one would derive by assuming that `v varied
from its triple point value linearly in T following Kirchoff’s
relation. Similar, expressions for ice, and their relation to
more complex expressions are explored further in the exer-
cises at the end of this chapter.

Although approximations such as those outlined above are
often adopted, care is warranted. For instance neglecting dif-
ferences in the gas constants implies that moisture fluctua-
tions no-longer contribute to density fluctuations, i.e., that
Tρ = T. In the tropical boundary layer, moisture fluctu-
ations are much larger than temperature fluctuations and
contribute to roughly half the variability in Tρ. Deriving a
consistent thermodynamic framework requires an asymptotic
approach, for instance by expanding the equations about a
small parameter equal to the difference between the specific
heats and gas constants, so as to better appreciate at which
order they contribute to one or the other expression. Such
an analysis would then identify what level of thermodynamic
description is necessary to describe a system for a particular
application, but has yet to be developed.

2.1.11.3 Choice of thermodynamic variables

The question often arises as to which thermodynamic vari-
ables are most appropriate to adopt for the study of a given
process. There is a tradition of calling these thermodynamic
coordinates as they define the space within which thermo-
dynamic processes are studied, something that is especially
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evident in the diagrammatic methods reviewed in the next
section. Enthalpy based variables are well suited to the treat-
ment of mixing processes, because they are so naturally
linked to the extensive variables, and except for the dissi-
pation of kinetic energy there are no sources of enthalpy
through irreversible processes in the isobaric system.

It would appear that solving for the evolution of the poten-
tial temperature, θe, rather than the entropy, se would make
no difference. However mixing processes are an irreversible
source of entropy production which must be explicitly ac-
counted for if the entropy equation is being solved. These are
implicitly included when the potential temperature equation
is solved for. Consider the mixing between two air-masses,
so that the mixed state can be denoted by an over-bar, iden-
tifying intensive properties as the (appropriate) average of
the intensive properties of the two systems. The difference
between averaging entropies, as compared to potential tem-
peratures, becomes readily apparent when it is considered
that ln θ ≥ ln θ. The homogenisation of θ by a system that
solves for θ increases the entropy (which is proportional to
ln θ of the system as one would expect for an isobaric pro-
cess which conserves enthalpy. In this sense θ behaves like
an enthalpy variable.

Deciding whether the condensed (equivalent), ηe or ηi or
the evaporated (condensate-free) η`, reference state repre-
sentation is more or less favourable, depends on what is be-
ing described. Traditionally systems in which liquid water
is explicitly accounted for favour η` because it reduces to
the dry static energy in the absence of condensate. Systems
in which water vapour is the other thermodynamic coordi-
nate tend to favour ηe representations, in part because ηe

is, given the approximations in Eq. (2.68), roughly constant
even for open systems in which precipitation converges or di-
verges from a parcel of air. In the more exact representations
of ηe precipitation affects the value of the total water, and
hence cpe , and thus acts as an enthalpy source. But these
effects are usually small and as a result θe or ηe are widely
used to describe large-scale systems, particularly in so far as
they involve precipitation, and θ` or η` find favour in studies
of non-precipitating boundary layer clouds, as discussed in
Chapter 5.

2.2 Thermodynamic diagrams

Thermodynamic diagrams are used to represent the state of
a system, as well as thermodynamic processes. An examples
of such a process might be how temperature changes as air
rises in the absence of heating, i.e., adiabatically with or with-
out condensational processes. Such diagrams can say much
about the state of the atmosphere and how it might have
come into being as they can quickly convey a wide range of
quantitative information to the trained eye. This information
can be helpful in determining the subsequent evolution of the
atmosphere and is routinely used by weather forecasters to
evaluate the likelihood of different events, ranging from fog
formation to the energy available for deep convective over-
turning.

Many of these diagrams predate the widespread use of elec-
tronic computers. Even though today it is possible to com-
pute many quantities directly, thermodynamic diagrams are
still very useful for encapsulating the state of the atmosphere
and remain widely used. The most common thermodynamic
diagram is the Skew-T diagram, and its cousin the Tephi-
gram. Other diagrams include the Clapeyron, the Emagram
or Neuhoff, and the Stüve diagram. Less familiar, but also
useful is the Paluch diagram, and moist-static energy dia-
grams.

One difficulty that all diagrams share is that they are two
dimensional, and the most compact description of the state of
the atmosphere encompasses three dimensions, for instance,
{T, p, qt}. Two ways have been devised for getting around
this problem. One is to recast moisture as a temperature vari-
able, as is done in constructing the dew-point temperature.
The other is to link moisture to temperature and pressure by
a saturation assumption. Examples of both approaches are
evident through this book.

2.2.1 Skew-T and related diagrams

One of the most widely used thermodynamic diagrams is the
Skew-T . It adopts temperature, T, and ln p as its thermo-
dynamic coordinates. The logarithm of pressure is chosen
for the vertical coordinate rather than the pressure itself be-
cause in an isothermal atmosphere height varies with ln p,

and hence for a realistic temperature profile the ordinate is
roughly proportional to height. Isotherms are skewed at an
angle of about 45◦ from the vertical, so T varies along verti-
cal lines with ln p. The exact angle of skewness is chosen so
that the isentropes of a dry atmosphere and isotherms are
orthogonal at 1000 hPa and 0 ◦C, as illustrated in Fig. 2.3.
Skewing the isotherms in this fashion thus better differenti-
ates isotherms from isentropes.

Closely related to the Skew-T , and somewhat predating
it, is the Tephigram, literally the T ϕ gram, where ϕ was
originally used to denote potential temperature. Hence in
the Tephigram the coordinate system is orthogonal, with T
measured by the abscissa and ln θd by the ordinate. Usually
Tephigrams are right-rotated so that the ordinate becomes
roughly proportional to ln p and hence height. This follows
because along a dry adiabat the First Law dictates that

ln θ − lnT = −Rd

cp
ln p+ const. (2.74)

Hence associating the y-axis with ln θ and the x-axis with
T, isobars can be shown to satisfy an equation of the form
y = lnx + C. At temperatures of practical interest (which,
measured in Kelvin, are large) the curvature in the isobars
(which vary with lnT ) in such a space is small, so that if
the diagram is appropriately rotated isobars become approx-
imately horizontal. Hence Tephigrams and Skew-T diagrams
are very similar, the chief difference being that isobars are
slightly curved on the former and adiabats are slightly curved
on the latter.

Both the Skew-T and the Tephigram are derived from the
Emagram, which uses an orthogonal T -ln p coordinate sys-
tem. The Emagram is thought to be the first thermodynamic
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Figure 2.3 Skew-T ln p Diagram: saturated pseudo-adiabats
(grey, short dashed) are almost perpendicular to the abscissa
near the surface and curve to become parallel to dry adiabats
(grey solid) as p decreases. Equisaturation lines are shown by
long dashes, in grey. Plotted is the July 3, 2009 sounding from
Cabauw in the Netherlands, prior to a period of severe weather.
The blue line denotes the locus of dew-point temperatures
measured at different pressures as the sounding rose through the
atmosphere, the blue line the temperature.

diagram to be routinely used to visualise and quantify the
state of the atmosphere. It was proposed in the late 19th
century by Heinrich Hertz who is mostly known for his con-
tributions to understanding electromagnetic radiation.

Isobars on a Tephigram and the isentropes of a dry atmo-
sphere on a Skew-T diagram are examples of fundamental
lines. Fundamental lines are isolines whose shape is decided
by the thermodynamic coordinates. Other examples of fun-
damental lines include equisaturation curves and isotherms.
In a dry atmosphere, adiabats and isentrope are used in-
terchangeably to describe a line of constant θd. Through a
coordinate transform the fundamental lines of one thermody-
namic diagram can serve as the thermodynamic coordinates
of another. The relative orientation of the fundamental lines
on the Skew-T diagram help visualise how different processes
are related to one another, and are evident upon a closer
inspection of Fig. 2.3. Isobars are horizontal lines, which de-
crease logarithmically upwards so that the relation between
height and distance along the ordinate is nearly linear. The
isotherms are straight lines, slanted at roughly 45◦ toward
the upper right, and are plotted in 20 K bands. Dry adiabats
(lines of constant θd) are thin grey lines with negative slope
and slight concavity, which intersect the isotherms nearly
perpendicularly. Pseudo-adiabats , which we define below,

Table 2.4. Frequently Used Temperatures

Name Equation
T Temperature
θ Potential T (2.46)
Tρ Density T (2.7)
θρ Density θ (2.46) with Tρ
θe Equivalent θ (2.42); (2.71) as approx.
θs Saturation θe θe with qv = qs, ql = 0

θ` Liquid-Water θ (2.44); (2.72) as approx.
θ`,ρ Density θ` (2.44) with Tρ

are thin dotted curves that are approximately vertical at
high pressure and temperatures, but curve to the left and
become nearly parallel to dry adiabats at cold temperatures.
Equisaturation lines, describing how the dew-point temper-
ature (defined below) varies with ln p and T given constant
specific humidity, are marked by short dashed-lines, and in-
clined to the left of the isotherms.

To visualise how moisture is distributed in the atmosphere,
on a Skew-T diagram one plots the dew-point of the air, as
is shown by the blue line in Fig. 2.3. The dew-point tem-
perature is the temperature air would have if it were cooled
to the point of saturation, and as such it depends only on
the moisture content of the air and the ambient pressure. If
the dew point temperature equals the temperature, this im-
plies that the air is saturated, pv = ps. Thus the dew-point
depression, measured as the difference between the temper-
ature and the dew-point temperature, measures the relative
humidity, so that in Fig. 2.3 the air is relatively dry be-
tween 500 hPa and 350 hPa, and nearly saturated at around
900 hPa and again near 680 hPa. For an adiabatic process
the dew point temperature follows an equisaturation curve.
Hence the close alignment between the dew-point tempera-
ture and lines of equisaturation along with the alignment of
temperature with lines of constant potential temperature is
a signature of a layer that is well mixed by turbulence, as
for instance is the case near the surface (lower 150 hPa) in
Fig. 2.3.

Another useful way to visualise the state of the atmo-
sphere is in terms of θe and its value if the atmosphere were
saturated at the same temperature, plotted versus height,
or temperature, in the atmosphere. Using temperature as a
vertical coordinate is particularly helpful for climate change
studies because the top of the troposphere more closely main-
tains a constant temperature than it does a constant height.
The value that θe would adopt were its specific humidity set
equal to the saturation specific humidity, without changing
the temperature or pressure, is called the saturation equiv-
alent potential temperature. It is denoted by θs and defined
as

θs = T

(
pθ
p

)Rs
cs

Ωs exp

(
qs`v
csT

)
. (2.75)

with

Ωs =

[
1 +

qsRv

Rs

]Rs
cs

. (2.76)
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where cs = cpd +qs(cl−cpd) and Rs = (1−qs)Rd. The satura-
tion equivalent potential temperature adds yet another tem-
perature to the bewildering array of temperatures adopted
by meteorologists (Table 2.4). Because qs depends only on T
and p, lines of constant θs are fundamental lines on a Skew-
T , as well as the other thermodynamic diagrams discussed
above, and define the pseudo-adiabat . The word pseudo
arises because formally the process corresponding to con-
stant θs is similar to a reversible adiabat, but the removal of
condensate upon condensation, as implied by the use of qs
instead of qt implies a loss of condensate enthalpy by the sys-
tem, hence it is not truly adiabatic. The difference between
θs and θe measures the subsaturation.

2.2.2 Isentropes, adiabats, and lapse rates

For the moist system, irrespective of whether the moisture
condenses, the state vector is three dimensional. In addition
to the thermodynamic variables required to describe the dry
system, an additional variable is required to specify the com-
position of the system, qt for instance. An ssumption that
constrain the third degree of freedom is thus required to ren-
der the state of the system as a point in a two dimensional
space. This third degree of freedom also leads to a distinction
between isentropes and adiabats. In a dry system, where the
composition of the system is fixed, an adiabatic process is
an isentropic process. In a moist system, where the composi-
tion of the system weights the different contribution of water
versus dry-air to the system entropy, isentropes and adiabats
are not the same. In a dry atmosphere the loss of mass does
not change its specific entropy, the loss of condensate from
a moist system does.

In the dry system, isentropes (or adiabats) are described
by lines of constant potential temperature, θd. In the moist
system isentropes are described by lines of constant θe. The
rate at which the temperature falls off (or lapses), as a parcel
is lifted to lower pressure, or greater altitude, is called the
lapse rate. In a dry atmosphere, the decrease of temperature
with height along a line of constant θd is called dry adiabatic
lapse rate, Γd. From the enthalpy form of the First Law, for
an adiabatic process,

0 = dhd − vdp. (2.77)

For hydrostatic changes in pressure, and given the definition
of the dry enthalpy, this implies that cpddT +gdz = 0 which
yields the dry adiabatic lapse rate as

Γd ≡ −
dT

dz
=

g

cpd
(2.78)

In a moist, but unsaturated, atmosphere an analogous pro-
cess yields a slightly modified lapse rate of g/cpe . But because
cpe depends on qt the lapse rate depends on the composition
of the system, and its derivation assumed that cpe is con-
stant, i.e., the system is closed. It thus is best described as
the unsaturated moist isentropic lapse rate.

The saturated moist isentropic lapse rate is derived simi-
larly, but starting from the form of the first law valid for a
saturated system,

0 = dhe − vdp where he = cpeT + `vqs (2.79)

where the expression for he is taken from Eq. (2.22). One
could have equivalently started from Eq. (2.38), and assumed
that θe is constant, but doing so makes the derivation of the
lapse-rate more cumbersome. For an isentropic process cpe
is constant, and the main complication arises from the term
involving the saturation specific humidity, qs, as

qs =
ps

p

(
ε1

1− (1− ε1)psp

)
. (2.80)

Irrespective of the term in parentheses, which is only a minor
correction, qs depends on both p and (through ps) T. To
simplify the notation let’s define the partial derivatives

βp ≡ −∂ ln qs
∂ ln p

= (1 + ε2qs) ≈ 1, (2.81)

βT ≡
∂ ln qs
∂ lnT

=
`v
RvT

βp ≈ 5400K
T

, (2.82)

Adapting this notation to Eq. (2.79) allows us to write the
isentropic form of the first law as[

cp + `v

(
qs
βT
T

)]
dT −

(
1 + qs

βp
RT

)
vdp = 0. (2.83)

where cp ≡ cpdqd + cpvqs + clql is the specific heat for the
composite system, which we have assumed to be saturated.
Substituting with the hydrostatic relation for vdp above, the
lapse rate (or decrease of temperature with height) for a
saturated isentropic process follows as

Γs ≡ −dT

dz

∣∣∣∣
θe

= γΓd (2.84)

with

γ ≡ cpd
cp

 1 + qsβT

(
Rv
R

)
1 + qsβT

(
`v
cpT

)
 . (2.85)

In deriving Eq. (2.85), βT is expressed in terms of βp using
Eq. (2.82), and fusion enthalpy has been neglected. The sat-
urated moist isentropic lapse rate (or saturated isentrope)
thus depends on qt as well as T and p.

The dimensionless lapse rate γ measures the relative role
of internal energy as compared to the vaporisation enthalpy
in doing the work required to lift a parcel. It decreases with
temperature from a value very near unity at the colder tem-
peratures of the upper troposphere, where little water is
available to condense, to a value near 0.4 at 300 K (Fig. 2.4),
with an inflection point near 280 K.

In discussing lapse rates, terminology can be confusing.
Γd is called the dry adiabatic lapse rate, i.e., the lapse rate
of dry air following an adiabatic process. In contrast Γs is
the saturated isentropic lapse rate: ‘isentropic’ because its
derivation additionally assumes that mass was conserved, so
that qt is constant, which is more stringent then simply as-
suming that no heat is added; and ‘saturated’ because it was
assumed that qt ≥ qs to that qv = qs. To contrast with the
dry adiabat it is tempting and common to call Γs the moist
adiabat, or reversible moist adiabat. The former is common,2

but can be confusing because the moist system need not be

2 There is a certain tradition of imprecision in the usage of the
phrase “moist adiabat" as it is mostly intended to draw distinction
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Figure 2.4 Non-dimensional lapse-rate, γ, following Eq. 2.85
for a fixed atmospheric pressure of 1000 hPa. The dashed curve
shows the pseudo-adiabat (for which it is assumed that
condensed water is removed) and the solid curve the saturated
isentropic (or reversible moist adiabat ). The pseudo-adiabat
asymptotes to a value less than unity because of the specific heat
of condensed water, whose contribution depends on the
temperature of the air at initial saturation, here taken as 300 K.

saturated, and an adiabatic process need not be isentropic.
The latter is more precise, but uses two words (’reversible’
and ’adiabatic’) when one (’isentrope’) would work just fine.
Given that systems are in general moist, it would be both
simpler and more sensible to talk about saturated and un-
saturated isentropes.

For large parcel displacements an increasing fraction of the
initial vapour will be converted to condensate, and the as-
sumption that this condensate remains in the parcel becomes
increasingly untenable. A better approximation would be to
adjust Γs, at every temperature and pressure, to that which
it would have if the system were just saturated, i.e., qt = qs.

This is equivalent to assuming that condensate is immedi-
ately lost as precipitation, hence its enthalpy content can
no longer contribute to the expansional work done by the
rising parcel, which leads to a greater change in tempera-
ture with decreasing pressure, i.e. a larger lapse rate. Such a
process is irreversible and non-adiabatic and so the resultant
lapse-rate, denoted Γs̃, is often called the pseudo-adiabat, see
Fig. 2.4. A straightforward calculation of the difference be-
tween pseudo-adiabats and saturated isentropes shows that
they differ most appreciably in the upper troposphere. This
is to be expected because T decreases with height, hence qs
decreases and ql (whose effects are neglected in the pseudo-
adiabat) increases correspondingly. Overall the differences in
T tend to be less than 0.5 K below 400 hPa increasing to as
much as 3 K to 5 K between 100 hPa and 200 hPa.

One advantage of the pseudo-adiabat is that it depends
only on T and p and is representable as a fundamental line on
a standard atmospheric thermodynamic diagram. Addition-
ally, it more naturally accommodates an ice phase. Whereas
accounting for freezing (which was not done above) would
lead to a discontinuity in the saturated isentrope at the triple
point temperature, the pseudo-adiabat is only discontinu-
ous in its derivative at this point. Nonetheless, the saturated

to a dry adiabat. In this sense its usage (also elsewhere in this
book) is agnostic to fine distinctions arising from whether the
process is strictly reversible, the fineness of the thermodynamic
approximation, or how precisely, if at all, ice-phase processes are
accounted for.

isentrope (accounting for ice formation, and thus computed
numerically rather than with Eq. (2.85)) defines a thermo-
dynamic limit – following any adiabatic process an air-parcel
rising to a given altitude must be colder than its saturated
isentropic value. In the lower troposphere deviations from the
saturated isentrope are most likely to be associated with mix-
ing processes, simply by virtue that the absolute humidity
differences between ascending parcels and their environment
are largest there. In the upper troposphere precipitation and
the retardation of ice formation contribute the most to dif-
ferences between rising parcels and their saturated isentropic
value. An interesting footnote is that the temperature depen-
dence of γ, which is important for climate change, is greatest
at temperatures around 280 K, which are characteristic of the
present day lower tropical troposphere.

2.2.3 Soundings

Soundings in the atmosphere are measurements of its state
as a function of altitude. Generally they are made with sen-
sors lofted by a balloon, or dropped with a parachute. In
either case the sensor package drifts with the mean wind as
it rises and uses global positioning systems (GPS) to mea-
sure the wind vector, and in situ sensors to measure tem-
perature and relative humidity along its trajectory. In some
special cases also other quantities, e.g., ozone. An example
of a standard meteorological sounding is shown in Fig. 2.3,
taken from a summer day in the Netherlands, foreshadow-
ing severe weather. Plotted are two lines, the red, right-most,
line demarcates the temperature, and the blue, left-most, line
demarcates the dew-point temperature. Sometimes wind-
vectors are plotted alongside the sounding, but not in the
present case.

A variety of thermodynamic processes can be inferred from
a sounding. For instance, well-mixed layers (or dry-adiabatic
processes ) will have the dew-point follow the equisaturation
line, and temperature will, in the absence of condensation
,follow the dry adiabat . This is more or less the case near
the surface (pressures greater than 900 hPa) in the sound-
ing plotted in Fig. 2.3. It suggests that adiabatic lifting of
surface air would lead to condensation (an equal tempera-
ture and dew-point) at a pressure near 900 hPa. This level,
where lifted air condenses, is called the lifting condensation
level, or LCL. Further ascent would follow the saturation
isentrope, here approximated by the pseudo-adiabat which
falls off somewhat less rapidly with height than the tem-
perature in the sounding. This implies that air parcels con-
densing at the LCL and rising along the saturated adiabat
will be warmer than their environment and, modulo the con-
tribution of condensate to density, more buoyant. Only at
about 250 hPa does the environmental temperature begin to
increase again, in association with the tropopause, limiting
the buoyancy of saturated ascent from the LCL. Above this
level the atmosphere is more or less isothermal, and one is
in the stratosphere. Some of the other interesting features in
this sounding will be discussed in subsequent sections.
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2.3 Convective instability

Archimedes is credited with having developed the concept of
buoyancy. According to the Archimedean Principle an object
will rise if its mass is less than that of the fluid it displaces.
If it is denser, and hence has a greater mass than the fluid it
displaces, it will sink. The rising or sinking is a result of an
imbalance from between the pressure and the gravitational
force which either allow the denser object to do work on its
environment as it sinks, or the environment to do work on
the object as it rises. This imbalance between the hydro-
static pressure and the gravitational force is measured by
the buoyancy, as introduced in Eq. (2.9).

In this section the buoyancy is used to explore the con-
vective stability of different configurations of a static fluid.
First the stability of a layer to infinitesimal displacements
within that layer is considered. Next, the stability of two
layers whose properties change discontinuously at an inter-
face, for instance a cloud boundary is explored. Finally the
response of the stability to finite displacements is considered.
One of the things that makes moist fluids fascinating is the
variety of convective instabilities that they support.

2.3.1 Infinitesimal displacements within a layer

Figure 2.5 Schematic showing how buoyancy changes for an
infinitesimal isentropic displacement, δ, of a fluid parcel relative
to the environmental density profile, ρ(z), within the layer and
denoted by the solid line. Panel (a) and (c) share the same
density stratification, ρ1(z), but the fluid in (c) is saturated.
Panel (a) and (b) both show an unsaturated case, but ρ2(z) in
panel (b) decreases less strongly height than ρ1(z) in panel (a).
Lines also denote unsaturated (dashed) and saturated (dash-dot)
isentropic density change with height.

For a homogeneous fluid, an infinitesimal displacement,
δ of a fluid parcel will be unstable if the buoyancy arising
from a displacement is in the same sense of the displacement.
For instance if an upward displacement is accompanied by a
relative increase in buoyancy the displacement will be be am-
plified. The buoyancy due to an infinitesimal displacement
is given as the difference between the density change that
would arises from an isentropic displacement of a fluid par-
cel (denoted by subscript s , to denote the idea of a reversible
adiabatic, or isentropic, displacement) and the environmen-
tal density gradient, such that

b = −g ρ(z + δz)|s − ρ(z + δz)

ρ(z)
= −g

(
∂z ln ρ|s − ∂z ln ρ

)
δz.

(2.86)

If the environmental density decreases with height less than
the isentropic change in the density of a displaced fluid par-
cel, then the fluid parcel will, after a small upward displace-
ment, find itself less dense than the environmental density
at that same level and begin to accelerate upward. This sit-
uation is shown in panels (b) and (c) in Fig. 2.5 If the envi-
ronmental density decreases with height more than it does
for an isentropic change than the fluid parcel will find itself
more dense than the environment and accelerate downward,
as depicted in panel (a). In this situation the environmen-
tal density profile is said to be stable and in the absence of
dissipation the displaced fluid parcel will oscillate about its
equilibrium level with the frequency N, where

N2 = g
(
∂z ln ρ|s − ∂z ln ρ

)
. (2.87)

N is called the Brunt-Väisälä Frequency. In the case that
N2 < 0, the fluid is said to be convectively unstable. Be-
cause the density change following an isentropic displace-
ment of a fluid parcel is a thermodynamic property of the
fluid, N is given by the environmental stratification and the
state of the fluid. The density change following an isentropic
displacement of a fluid parcel also depends on the state of
the fluid, in particular whether or not it is saturated. Hence,
and as shown in Fig. 2.5, a given density profile which is
stable if the fluid is unsaturated may be unstable if the fluid
is saturated. A density gradient that is stable in the case the
fluid is saturated, but unstable in the case the fluid is unsatu-
rated is called conditionally unstable. To make clear whether
or not the density gradients in a fluid are being evaluated in
comparison to saturated, versus unsaturated, isentropic par-
cel displacements Ns is used to define the former, and Nd

the latter.
If it is assumed that the pressure felt by the disturbed

parcel adjusts instantaneously to the pressure at the new
height, z+δz, then pressure differences between the displaced
parcel and its environment vanish. In this case it is sufficient
to consider

ρ′

ρ
= −T

′
ρ

Tρ
= −T

′

T
− Rv

R
q′v +

Rd

R
q′t. (2.88)

In the absence of saturation, q′v = q′t, and qt is conserved for
the parcel displacement. Environmental gradients of qt do,
however, contribute to the density difference between the
displaced parcel and the environment, such that

N2 = g

[
1

T

(
∂zT − ∂zT |s

)
+

(
Rv −Rd

R

)
∂zqt

]
. (2.89)

The difference between the isentropic lapse rate and the
environmental lapse rate can be expressed in terms of the
entropy, or potential temperature, gradient, such that the
Brunt-Väisälä Frequency for the unsaturated fluid becomes

N2 = cpΓ
d ln θ

dz
+ g

(
Rv −Rd

R

)
dqt
dz

. (2.90)

In deriving Eq. (2.90) cpΓ, where Γ denotes the adiabatic
lapse rate, substitutes for g in the first term on the rhs.
Writing N2 in terms of Γ anticipates the derivation of its ex-
pression for a saturated layer. In the completely dry case the
expression simplifies further because the second term van-
ishes, Γ reduces to Γd and cp reduces to cd .
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Figure 2.6 Different regions of atmospheric stability, as
delineated by the fundamental lines demarcating different lapse
rates on a Skew-T diagram.

For a saturated layer, changes in qv vary as qs. Changes
in qs can be related to temperature fluctuations through
the Clausius-Clapeyron equation, as described by Eq. (2.82).
Pressure fluctuations make no contribution because the dis-
placed parcel is assumed to adjust to the pressure in the
environment, so that terms depending on the difference be-
tween its pressure and that of the environment vanish. Ac-
counting for the temperature related qs variations as well as
gradients in qt thus results in the following expression for
the Brunt-Väisälä frequency in a saturated layer:

N2
s = g

[
1

T

(
1 + qs

Rv

R
βT

)(
∂zT − ∂zT |s

)
− Rd

R
∂zqt

]
.

(2.91)
As in the dry case, the difference between the actual lapse
rate and the saturated isentropic lapse rate is, following
Eq. (2.38), proportional to the vertical gradient of the value
of θe in the saturated layer. Hence the Brunt-Väisälä Fre-
quency in a saturated layer, can be expressed analogously to
the expression for unsaturated layers, such that

N2
s = cpΓs

d ln θe
dz

− gRd

R

dqt
dz

. (2.92)

As is expected N2
s reduces to Nd if qt vanishes. Because

dθe/dz < dθ/dz the saturated Brunt-Väisälä Frequency is
less than that of the dry fluid, and perturbations that would
be stable for an unsaturated fluid (N2 > 0) may be unstable
(N2

s < 0) for a saturated fluid.
The difference between N2 and N2

s define three stability
regimes of the atmosphere. A region of absolute stability and
instability, irrespective of the saturation state of the atmo-
sphere, and between them a region where the atmosphere is
said to be conditionally unstable. A conditionally unstable
layer is one which would be unstable if it were saturated, but
stable if it is unsaturated. These different stability regimes,
demarcated roughly by the sign of Γd and Γs̃, are illustrated
schematically in Fig. 5.3.1.4, as they would appear in rela-
tionship to one another in a Skew-T diagram. This demar-
cation is only rough because N2 and N2

s , also depend on
moisture, and thus are not fundamental lines on a Skew-
T . Because Γs decreases in magnitude with increasing tem-
perature, as roughly illustrated by the tendency of pseudo
adiabats in the Skew-T diagram (Fig. 2.4) to become more
perpendicular to dry adiabats at warmer temperatures, the

domain of conditional instability increases with temperature.
It is easier to destabilise a warm atmosphere.

2.3.2 Stability across interfaces

In the atmosphere very sharp gradients are frequent, and
arise from different air-masses coming together to form a
contact discontinuity. Perhaps the best example of this is a
cloud. In such situations the stability of the interface can
be explored by comparing the change of density across the
interface, or the effect of mixing on the fluid properties on
one or the other side of the interface. Both situations are
depicted schematically in Fig. 2.7 for the most interesting
case of when one fluid is saturated and the other is not.

Figure 2.7 The interface between an unsaturated fluid
overlying a saturated fluid, and their thermodynamic state.
Because the boundary between the fluids is assumed to be
infinitesimally thin there is no difference in the pressure between
the two layers.

For the case of an overlying unsaturated fluid separated
from an underlying saturated fluid by an interface, as de-
picted in Fig. 2.7, the stability of the interface depends on
whether or not the upper fluid (layer 2) is more or less dense
than the lower layer. If the upper fluid is denser, i.e., ∆ρ > 0

the interface will be unstable. This condition can be ex-
pressed in terms of the thermodynamic variables, {h , qt}.
Assume that the differences between the fluid states is small
so that,

∆ρ

ρ
≈ −

(
∆T

T
+

∆R

R

)
(2.93)

where R = Rd + qvRv − qtRd, hence its change reflects
changes in fluid composition. For the saturated fluid qv = qs
and for the unsaturated fluid qv = qt. The change in the
temperature and gas constants across the layers can be ex-
pressed in terms of changes in qt and he given

∆he ≈ (∆cpe)T + cpe∆T + (∆`v)qv + `v∆qt + `vqc (2.94)

and

∆R ≈ Rv(∆qt + qc)−Rd∆qt. (2.95)

In deriving these expressions it is assumed that the state of
the upper layer fluid can be expressed in terms of a Tay-
lor series expansion about the state of the lower layer fluid.
Such an approximation is only roughly correct as for many
situations ∆qt is of the same order as qt, nonetheless it gives
some insight into the stability of the layer.

Rearranging Eq. (2.94-2.95) results in an expression for
the density difference between the two layers as

∆ρ

ρ
=

[
`v
cp`T

− Rv

R

]
(∆qt+qc)+

[
cl − cpd
cp`

+
Rd

R

]
∆qt−

∆he

cp`T
.

(2.96)
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For δρ > 0 the stratification of the two layers is unstable,
hence the instability criterion can, assuming ∆qt < 0 and
qc � |∆qt| , be written as

∆he

`v∆qt
> κ1. (2.97)

where

κ1 ≈ 1 +
T

`v

[
(cl − cpd)−

(
Rv −Rd

R

)
cp`

]
. (2.98)

For conditions typical of the subtropics, κ1 ≈ 1.3. If, one
adopts the common approximation of neglecting differences
between the specific heats κ1 ≈ 1. In either case it means
that for the situation depicted in Fig. 2.7 the moist enthalpy,
or equivalently the moist static energy, must decrease across
the interface; more strongly the greater the change in qt.

Eq. (2.98) can be thought of as a form of conditional insta-
bility, whereby an increase in the moist-static energy across
the layer is sufficient for the interface to be stable in the
absence of mixing.

The case in which the two layers mix introduces additional
possibilities. Isobaric mixing of fluid elements from the two
layers as depicted in Fig. 2.7 can, through non-linearities in
the equation of state, lead to a mixture whose density is not
bounded by the temperatures of the constituent air masses.
Consider how small, isobaric, changes in the density, defined
in Eq. (2.93), depend on changes in the thermodynamic coor-
dinates {he, qt}. We first consider the case where the mixing
fraction, χ, of the unsaturated fluid is small, so that the
mixture remains saturated. This case differs from the static
situation in that now qv = qs which changes with T. Denot-
ing the small change by δ, so for instance χ∆he = δhe, this
implies that

δR = Rvδqs −Rdδqt = Rv
qs
T
βT δT −Rdδqt. (2.99)

Similarly an expression involving qs arises in expanding the
expression for δhe such that

δρ

ρ
=

[
cl − cpd

cp + βT `vqs
T

(
1 +

Rv

R
βT qs

)
+
Rd

R

]
δqt −

δhe

cpdT
γ

(2.100)
For the usual case in which saturated air mixes with drier,

air so that δqt < 0, then this implies that density fluctuations
will be negative if

∆he

`v∆qt
> κ2 (2.101)

where

κ2 =
cpdT

γ`v

[
cl − cpd

cp + βT `vqs
T

(
1 +

Rv

R
βT qs

)
+
Rd

R

]
(2.102)

is the buoyancy reversal parameter. Because we have as-
sumed that ∆qt is negative this implies that ∆h must be
sufficiently negative for mixtures to be more dense than their
constituent components. For conditions typical of subtrop-
ical stratocumulus κ2 ≈ 0.56. If, as is common, the ther-
modynamics is developed without considering differences in
specific heats, then in such a system κ2 = 0.23. Because
κ2 < κ1 this implies the existence of stable interfaces, which

Figure 2.8 Mixing diagram showing how the buoyancy of a
saturated layer changes upon mixing with a fraction χ of
unsaturated air, for two air masses whose buoyancy differs by
∆b = 0.154. The saturation mixing fraction χs, is the mixture
with the minimum buoyancy, bs = −0.011. The different rate of
change of buoyancy with mixing fraction is illustrated by the
dashed lines for saturated and unsaturated processes
respectively.

as a result of mixing processes, for instance by diffusion, be-
come unstable.

The situation whereby

κ1 >
∆he

`v∆qt
> κ2 (2.103)

defines the case of buoyancy reversal, expressed here in the
thermodynamic coordinates {he, qt}, but because for an iso-
baric process ∆η = ∆h the buoyancy reversal criterion is
equivalently formulated in terms of moist static energy. It
says that for η′e sufficiently negative, the accompanying den-
sity fluctuation will be less than zero assuming the perturbed
fluid parcel remains saturated.

Physically this condition just expresses the fact that the
evaporation of condensate from the saturated layer, when
it mixes with the drier layer, causes cooling in the mixture
which can more than offset the warming from the increase
in dry enthalpy that accompanies the mixing. This leads to
the curious phenomenal of a mixing induced instability. This
type of instability is thought to be important for stratocu-
mulus decks in the very dry subtropics, and likely inhibits
them from becoming too deep (e.g., as discussed in Chapter
5).

The situation for buoyancy reversal based on the state of
a typical subtropical stratocumulus cloud is illustrated with
the help of Fig. 2.8. Here one sees that for small mixing frac-
tions the density temperature decreases, reaching its most
negative value when the mixing fraction takes on a critical
value associated with that mixture which just evaporates all
the condensate contributed to the mixture by the saturated
component of the mixture. This is called the saturation mix-
ing fraction, χs. For χ > χs the mixed parcel warms within
increasing χ. The figure shows that for typical stratocumulus
layers there is not sufficient liquid water to support strongly
negatively buoyant mixtures, i.e., χs is small.

Thus in the atmosphere all conditionally unstable inter-
faces are also subject to buoyancy reversal. As saturated air
rises through the environment the cloud-clear-air interface
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is necessarily destabilised by mixing processes at the cloud
front. As the cloudy air rises, clear air mixes at the cloud
edge, in ways that are very effective of consuming the avail-
able potential energy of the rising plume. This makes clouds
very effective mixing entities, something that is hidden from
view by their visual appearance.

2.3.3 Subcritical instabilities, and CAPE

A sub-critical instability is one in which the basic state is
only unstable to perturbations greater than a certain am-
plitude. There is a tradition of considering the stability of
finite displacements of fluid parcels as a way of measuring
the stability of the atmosphere. Here the thinking is that
disturbances, for instance a spreading gust front, can bring
layers of the atmosphere to a state, and into an environment,
where they become unstable.

The susceptibility of the atmosphere to finite amplitude
parcel displacements is often measured by the Convective
Available Potential Energy, or CAPE. CAPE measures the
amount of work the atmosphere is capable of doing on a par-
cel lifted to its level of free convection. Denoting the CAPE
by the symbol A:

A =

∫ zn

zf

b dz, (2.104)

where b is the buoyancy as defined in Eq. (2.9), and the limits
of integration are zf , the level of free convection (LFC) and
zn, the level of neutral buoyancy (LNB). This is the level
at which the parcel lifted following some specified process,
for instance along a saturated isentrope, or pseudo-adiabat,
ceases to be buoyant relative to the environment. Most of
the time zn is near the tropopause.

Substituting (2.9) into (2.104) and using the hydrostatic
equation to replace the integration in height by an integra-
tion in pressure yields

A =

∫ pf

pn

RdT
′
ρ d(ln p). (2.105)

Thus on the Skew-T diagram (e.g., Fig. 2.3) A is roughly
equal to the area between the environmental temperature
and the dashed line. ‘Roughly’ because the potential acceler-
ation depends also on the available moisture, so as to account
for differences between T and Tρ.

CAPE as defined by (2.104) depends sensitively on the
properties of the parcel being lifted and the manner in which
it is lifted. Small differences in the initial state of a parcel can
lead to large differences in A. For instance, a slight drying
of the boundary layer in Fig. 2.3 will raise the LCL and
decrease the temperature of the saturated adiabat, and raise
the level of free convection, thereby reducing A.

Because A describes the work the atmosphere can do on
a parcel, or alternatively the potential energy available to a
convecting parcel, it can be related to the maximum kinetic
energy. That is it bounds the amount of kinetic energy a
parcel could have, thus defining a velocity scale:

wmax =
√

2A (2.106)

which is another measure of the intensity of convection.

2.3.3.1 Other CAPE-like measures

CAPE is the most common measure of the atmosphere to
support overturning through the instability of saturated as-
cent. Whether or not CAPE is present in the atmosphere
depends on the properties of the parcel being lifted, and
the process whereby it is lifted. Even then many other fac-
tors come into play in deciding on the capacity of the at-
mosphere to overturn. The amount of work that must be
invested to access the CAPE of a sounding is highly vari-
able. In some cases one does not have to do a large amount
of work on a parcel before the atmosphere starts returning
the favour. To measure the work that must be invested to
realise CAPE, another parameter, the Convective Inhibition
(or CIN), is introduced. It is the analog to CAPE, but mea-
sures the amount of work that must be done to lift a parcel
from some reference level, p∗, to its level of free convection:

I = −
∫ pf

p∗

RdT
′
ρ d(ln p). (2.107)

Thus the ability of the atmosphere to do work on an air
parcel depends not on CAPE alone, but also on other fac-
tors such as CIN. In Fig. 2.9, CIN corresponds to the area
between the environmental temperature and the saturated
isentrope rising from the LCL to the LFC.

Figure 2.9 Illustration of different types of CAPE using the
sounding of Fig. 2.3. The CAPE is illustrated by the area
between the red dashed line showing the saturated adiabatic
lapse rate for a parcel rising from the LCL. The Convective
Inhibition, or CIN, is defined by the negative area between pf an
the LCL. The blue dashed line shows the temperature of air
formed by saturating very dry air near 500 hPa, and maintaining
it in saturation as it descends, and the area between the blue
dashed line and the environmental temperature demarcates
downdraft CAPE.

Another CAPE like measure of the atmosphere is called
down-draft CAPE, or D. It and the other forms of CAPE
are illustrated in Fig. 2.9. D measures the stability of sat-
urated downward displacements of air first brought to its
wet-bulb temperature by evaporation of falling rain. The
wet-bulb temperature (sometimes denoted Tw) is bounded
by the dew-point temperature and the actual temperature.
It is the temperature that one gets by isobarically bring-
ing air to saturation through evaporation. Because water is
evaporated into the air, the air both cools and moistens in-
creasing its mixing ratio while decreasing its temperature.
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Hence,

D(pi) =

∫ psfc

pevap

RdT
′
ρ d(ln p), (2.108)

where here Tρ(pevap) = Tw and T ′ρ is the difference be-
tween the virtual temperature of a parcel at some level pevap

brought to saturation by evaporating water into it and the
environmental value of Tρ. Physically D measures the stabil-
ity of air to evaporation of rain. In environments with large
values of D vigorous down-drafts can be formed by evapo-
rating water (from precipitation) into a dry ambient envi-
ronment. The analogy to buoyancy reversal, whereby nega-
tively buoyant parcels can be created through isobaric mix-
ing, should be apparent.

2.3.3.2 Caveats on CAPE

As alluded to above the actual CAPE of a given atmospheric
sounding is not a number without ambiguity. This ambiguity
stems mostly from the varied definitions associated with it.
Above CAPE has been defined to be the positive area on
the thermodynamic diagram. Others define it to be the net
positive area associated with a parcel lifted dry adiabatically
from the surface to the level of neutral buoyancy. Others
compute the CAPE associated with a parcel characterised
by the mean properties of the lower 10 hPa to 50 hPa of the
atmosphere. Yet others adjust the surface properties of the
sounding to reflect what they anticipate conditions will be
like at some particular point in time. Because it measures a
conditional process, different definitions arise naturally, and
these can be both quantitatively and qualitatively different,
as how much energy is available to a parcel raised to its
level of free condition depends very much on the parcel being
lifted.

The thermodynamic processes which govern the evolution
of the state of the parcel above the lifting condensation level
also play a large role in determining CAPE. For instance
parcels in which ice forms will have different values of CAPE
than for parcels in which ice is not allowed to form. Likewise,
rising parcels usually mix with their environment, in fact the
more unstable they are the more they are likely to mix. Thus
CAPE can be seen as a function of the state of a parcel, the
environment, and the specified type of thermodynamic pro-
cess for the rising parcel. These ambiguities do not diminish
the value of a measure like CAPE, but they do indicate that
if it is to be used quantitatively the particular use of the
concept must be made precise.

2.3.4 Slice method

The ability of CAPE to characterise the potential energy
available to convection is based on a number of idealisations.
These include: (i) that the parcels being lifted follow the
specified thermodynamic process; (ii) that the parcels being
lifted are characteristic of the air from which the convection
actually develops; (iii) that the response of the environment
can be neglected. More refined measures of convective insta-
bility attempt to address one or more of these limitations.
Most notable among these is the slice method introduced

by Jacob Bjerknes, one of the pioneers in the development
of meteorology as a branch of physics, in the 1930s. Un-
like in parcel theory, where infinitesimal parcels are assumed
to move through a quiescent environment, Bjerknes’ slice
method considers the finite size of convective motions and
hence the compensating downward motions they induce. By
doing so it identifies an effective stability, which depends on
the area fraction occupied by the ascending motion.

The starting point for this method is to assume a con-
vecting atmosphere at some reference height z0 above cloud
base. It is envisioned that in some sufficiently large area, the
fraction of the convecting area is a robust quantity which
can be denoted by a. Integrating the vertical velocity over
the convecting region allows one to define a mean convective
velocity wc. Mass continuity across the reference level allows
one to express the mean subsiding velocity of the environ-
ment w in terms of (a,wc) :

awc + (1− a)w = 0. (2.109)

In convective modelling the quantity awc is related to the
convective mass flux,Mc, by the density, i.e.,

Mc = ρawc. (2.110)

In what follows the density is assumed to be constant, and
hence dropped from the discussion. This is consistent with
the treatment of shallow convection, wherein density differ-
ences are small, and Eq. (2.109) is a statement of mass con-
servation.

Assuming that the air rising in the convecting region is
rising along a saturated adiabat , while the subsiding air
follows a dry adiabat , the temperature difference between
the convecting region and the environment at the reference
level can be expressed as follows:

Tc(z0)− T (z0) ≈ T01 − Γs∆z↑ −
(
T02 + Γd∆z↓

)
, (2.111)

where both ∆z↑ and ∆z↓ are defined as positive

T01 = T (z0) + ∆z↑Γ (2.112)

T02 = T (z0)−∆z↓Γ, (2.113)

and Γ = −dT/dz the environmental lapse rate. Note that
the above implies that the model is most appropriate if ∆z↑
is associated with the distance above cloud base.

The above relations (illustrated schematically in Fig. 2.10)
describe the temperature in the convecting region as the tem-
perature that the environmental air at a distance ∆z↑ below
z0 would have it if were lifted to z0 along a saturated isen-
trope (denoted Γs) while the temperature of the environment
at z0 is that which the environmental air a distance ∆z↓
above the reference level would have were it brought dry
adiabatically to z0. The distances ∆z↑ and ∆z↓ are given
by wc∆t and −w∆t respectively, with the sign convention
chosen to ensure that a positively measured downward dis-
placement leads to a negative, or downward, velocity.

Substituting from above yields an expression for the tem-
perature difference in terms of a,wc and Γ,

Tc − T
∆t

= wc(Γ− Γs)− w(Γ− Γd) (2.114)

= wc

[
Γ− Γs +

a

1− a (Γ− Γd)
]
. (2.115)
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Figure 2.10 Situation modelled by the slice method. The
convecting air temperature cools following the saturated adiabat,
Γs as it rises a distance ∆z↑. The compensating subsidence
covers a greater area and descends a distance ∆z↓ and warms
following the dry adiabat, Γd. The convection is energetically
inhibited because the response of the environment stabilises the
atmosphere.

Thus the criterion for convective instability, Tc − T > 0 is
equivalent to requiring that

Γ > Γs + a(Γd − Γs) > Γs. (2.116)

This requirement is more severe than that given by the par-
cel method, or for the case of infinitesimal displacements in
the absence of a humidity gradient. The physical difference
being that the compensating downward motion stabilises the
environment. However, in the limit when a goes to zero the
original criterion, Γ > Γs, that one derives from parcel theory
is recovered.

A further implication of the above result is that moist
convection is most unstable if its fractional area is smallest.
Physically this is not surprising, as for a given wc vanishing
a implies that the compensating environmental motion is
minimised and hence the environment is stabilised the least.
This type of analysis might help explain the spacing of con-
vective systems, or why nature prefers to concentrate convec-
tion over rather small areas. Mathematically this is apparent
by considering the neutral limit of (2.115):

Γ− Γs(1− a)− aΓd = 0. (2.117)

Hence for a given unstable lapse rate, only for

a ≤ Γ− Γs

Γd − Γs
. (2.118)

will the atmosphere be convectively unstable.

2.4 Fluid dynamics

For studying conservation laws and force balances in flows,
the concept of the substantial derivative, denoted

Dt := ∂t +∇ · v (2.119)

needs to be mastered. It describes how a quantity changes
following its motion, here denoted by v, with ∇ the gradient
operator. In an inertial coordinate system in a gravitational
field, g = (0, 0,−g), the laws governing the conservation of
mass, momentum and energy of the two component fluid can

(with some assumptions to be discussed later) be expressed
as

Dtρ = −ρ∇ · v, (2.120)

Dtv = −1

ρ

[
∇p+ µ∇2v

]
+ g, (2.121)

Dts` =
1

ρT
[µ(∇v) : (∇v)−∇ · Fh ] , (2.122)

Dtρt = −ρt∇ · v. (2.123)

Equation (2.120) describes conservation of total mass, where
the density, ρ = ρd +ρt, depends on the constituent densities
for dry air and total water. The second is the Cauchy equa-
tion, describing Newton’s law for a fluid parcel, with velocity,
v = (u, v, w). Surface forces acting on the parcel are writ-
ten in terms of the pressure gradient (for isotropic forces).
Deviatoric surface forces are assumed to behave in a diffu-
sive fashion described by the dynamic viscosity, µ. The only
body force is that arising from g. The Second Law of Ther-
modynamics includes the divergence of an enthalpy flux, Fh ,

associated with radiative and conductive enthalpy transfer,
and heating through the dissipation of kinetic energy, which
is positive definite and proportional to the dynamic viscosity.
Water mass conservation is described in terms of the total
water density, ρt, by Eq. (2.123).

Eqs. (2.120)-(2.123) can be derived by assuming that the
two components of the fluid constitute an ideal mixture, and
the velocity is the mass averaged velocity of the two com-
ponents of the fluid, and the ideal gas law provides an addi-
tional constraint to close the system. The above system holds
in the case of a multi-component fluid in the limit where
the condensed phase must be assumed to be comprised of
sufficiently small particles so that it can be described as a
continuous field, which diffuses and flows, and has the same
temperature, as the other constituents of the fluid. These as-
sumptions become difficult to maintain for the development
of a precipitate phase, wherein large particles are, by defini-
tion, falling through the flow, and their thermal inertia can
lead to large temperature differences to that of the mean
flow. An approximate way of treating such situations will be
discussed at the end of the next section. An introduction to
a literature providing a more exact description, by individ-
ually tracking the motion of the different fluid components
and exchanges of momentum and energy between them, is
provided in the section on further reading.

2.4.1 Soundproof equations

The above set of equations are rarely used as a basis for the
investigation of fluid processes in meteorology or oceanog-
raphy. The main reason is that despite the many simplifi-
cations in their derivation, they still include a phenomenon
not thought to be essential for many processes to which the
equations may be applied – sound waves. Compared to most
processes of interest, sound waves (acoustic modes) are very
fast, and mostly serve to adjust the pressure field so as to
maintain some form of incompressibility. For most applica-
tions of meteorological interest, assuming the flow satisfies
an incompressibility condition following its evolution (rather
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Table 2.5. Soundproof Equation Sets

Assumption Name
ρa = ρ0 Boussinesq
ρa = ρ0(z) Anelastic
ρa =

ρ0(z)θ0(z)
θ(x,y,z,t)

Pseudo-incompressible

than trying to simulate the adjustment process) makes the
equations easier to handle. Such equations sets are usually
arrived at by neglecting the contribution of pressure fluctua-
tions on density in the continuity equation, such that it can
be written in terms of a sound-proof density ρa,

Dtρa = −ρa∇ · v. (2.124)

with different forms of incompressibility arising based on how
ρa is approximated, e.g., Table 2.5.

The most restrictive of these arises from the Boussinesq
approximation, but it is also the most widely used and the
most straightforward for outlining the main form of the scal-
ing arguments to arrive at a sound-proof, or soundproof,
equation set. Hence the derivation for the Boussinesq case
is sketched out below.

The Boussinesq approximation involves solving for the ve-
locity v, density ρ, potential temperature θ`, pressure p, and
total-water specific humidity qt which are assumed to vary
about a dry and resting reference state {ρ0, θ0, p0(z)}. Only
the reference state pressure varies, and then only vertically.

In the limit of small perturbations, which for the moment
we denote by a prime,

ρ′(p, Tρ) ≈
(
∂ρ

∂p

)
0

p′ +
(
∂ρ

∂Tρ

)
0

T ′ρ (2.125)

so that

ρ′

ρ0
=
p′

p0
− T ′ρ
Tρ,0

. (2.126)

The principle assumptions of the Boussinesq system are
that density perturbations, ρ′ are, relative to the mean state,
small, such that

ε ≡ ρ′

ρ0
� 1, (2.127)

and that relative pressure perturbations are in most cases
of interest much smaller than relative temperature pertur-
bations. With these two assumptions,

ρ′

ρ0
≈ − T ′ρ

Tρ,0
. (2.128)

Eq. (2.128) is a good approximation because the pressure is
an integral quantity, in that through the hydrostatic balance
it depends on the integral of the temperature field through
the atmosphere. So local temperature perturbations are ex-
pected to be much larger than pressure perturbations. Al-
ternatively, this approximation follows because p′/p0 ∼ M2

where the Mach Number, M is much less than unity, where
as temperature fluctuations are influenced by entropy fluc-
tuations, which are independent (but generally larger) than
the Mach Number.

Consider the case when the flow is governed by a sin-
gle velocity-scale U and length-scale H (which imply a
time-scale H/U) determined by the inertial motions. In
this case the continuity equation (2.120) can be non-
dimensionalised by the time, velocity and distance, scales
(with non-dimensional quantities denoted by tilde),

(t̃, ṽ, x̃) where t = Ht̃/U, v = ṽU, x = Hx̃,

such that

D̃t(ε) + (1 + ε)∇̃ · ṽ = 0, (2.129)

where D̃t and ∇̃ denote the non-dimensional form of the con-
vective (substantial) derivative and gradient operator, e.g.,
Eq. (2.119). With (2.127) the leading order balance is sim-
ply non-divergence, which in terms of dimensional variables
becomes:

∇ · v = 0. (2.130)

To analyse the balances in the momentum equation
Eq. (2.121) can be multiplied by the density, here expanded
as ρ0 + ρ′, and a similar procedure followed, such that:

(1 + ε)D̃tṽ =− ∇̃(p̃0 + p̃′) + (1 + ε)g̃ +
1

Re
∇̃2ṽ, (2.131)

where p̃′ = (H/ρ0U
2)p′, g̃ = (0, 0,−gH/U2). Re ≡ UH/ν is

the Reynolds Number, with the kinematic viscosity, ν = µ/ρ.

Re is typically very large, 108, for geophysical flows. The
leading order balance in this equation is dp0/dz = −ρ0g, i.e.,
hydrostatic balance, which is here expressed in dimensional
form, so that

Dtv = − 1

ρ0
∇p′ −

(
T ′ρ
Tρ,0

)
g + ν∇2v. (2.132)

A simple application of the scale analysis outlined above
would suggest that the last term, which involves the viscosity,
should be negligible. This is not the case, as turbulence leads
to the production of velocity fluctuations across very small
scales, much smaller than used to scale the pressure gradi-
ents, and these ensure that the viscous term contributes at
leading order. The form of Eq. (2.132) makes clear the man-
ner in which fluctuations in density temperature, Tρ, drive
density fluctuations. The term (−T ′ρ/Tρ,0)g has units of ac-
celeration, it is a reduced gravity and is called the buoyancy
term and denoted as b = (0, 0, b), whereby b = gT ′ρ/Tρ,0.
The last term in Eq. (2.132) is the diffusion, which acts on
small scale velocity fluctuations.

The thermodynamic equation, (2.122), when written in
terms of θ` becomes, at leading order,

Dtθ` =
θ0

cp`T0(z)
[ν(∇v) : (∇v)−∇ · Fh )]. (2.133)

Given the continuity equation the expression for water mass
conservation can be written in terms of the specific humidity,
as

Dtqt = 0. (2.134)

Taken together, Eqs.(2.130), (2.132), (2.133) and (2.134) de-
fine the moist Boussinesq equations. They form a closed set
given an equation of state. The equation of state is given in
the form of the buoyancy function, b(T, p, qt). Both T and p
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are diagnostic functions. T follows from the definition of θl,
given p′+ p0, and p′ is given by taking the divergence of the
momentum equation, in which case the incompressibility of
the flow, Eq. (2.130), results in an equation for ∇2p which
can be inverted for p′.

Allowing for non-equilibrium condensate phase introduces
additional complexity and usually involves a greater degree
of approximation. For instance these phases will introduce
entropy source terms, and in general will not follow the flow.
Increasingly large hydrometeors, like hail, will have tempera-
tures that increasingly depart from that of the ambient flow.
The hydrometeors also exert a force on the flow, but this
is accounted for through the condensate loading term that
appears in the equation for the density temperature, e.g.,
Eq. (2.7). In the subsequent discussion we also drop the
primes, taking it for granted that the thermodynamic quan-
tities denote departures from the reference state. So doing
facilitates an exploration of how these departures in turn de-
part from an expected value as is customarily done in the
analysis of turbulence

2.4.2 Quasi-static (primitive) equations

For large-scale atmospheric flows the quasi-static equations
prove to describe the dynamics to a good degree of approx-
imation. In someways these are the most original dynamic
equations for the study of atmospheric motions, having been
derived by Vilhelm Bjerknes, Jakob Bjerknes’s father and
in someways the father of modern meteorology, as the ba-
sis for numerical weather prediction at the turn of the last
century. When written with pressure as a vertical coordi-
nate these equations take on a particularly convenient form,
and formally resemble the equations used to study small-
scale flows. The starting point for deriving the equations is
again the Eqs (2.120)-(2.123). Considerations of large-scale
flows in a non-inertial reference frame (such as the rotat-
ing Earth), cannot, almost by definition, neglect the Coriolis
acceleration, f × v, and are frequently written in a coor-
dinate system appropriate to the sphere (such as spherical
coordinates) or some segment of a sphere (for instance by
mapping the cartesian coordinate system conformally onto
a Mercator projection). For completeness in the discussion
that follows the apparent acceleration from the Coriolis force
is represented through the inclusion of the vertical compo-
nent of the inertial frequency f = {0, 0, f}, but a Cartesian
geometry is retained for simplicity. Consistent with the scale
of the analysis, viscous transport terms are neglected.

The crucial assumption of the quasi-static equations is
that the circulations are shallow, equivalently that the ver-
tical length scale is comparable to the depth of the tropo-
sphere and is much smaller than the horizontal length scale.
This implies that the vertical velocities first appear at higher
order. To follow the implications of this assumption; let us
represent the velocity vector by a two dimensional (horizon-
tal) vector on a geopotential surface vφ and a component, w
perpendicular to this surface,

v = (vφ(x, y, z, t), w(x, y, z, t)),

where w � vφ. For this scaling the leading order momentum
equations (2.121) become

Dtvφ = −f × v − 1

ρ
∇φp, (2.135)

0 = −1

ρ

∂p

∂z
− g, (2.136)

where ∇φ denotes the two dimensional (x, y), gradient oper-
ator along surfaces of constant geopotential. These equations
can be combined with the thermodynamic equation (2.122)
and continuity equations (2.120) and (2.123) to form a closed
set; although because w has been eliminated (2.136) further
manipulation is required to derive an equation for w.

Rather than following this path it proves convenient to
rewrite the equations with pressure as a a vertical coordinate,
as this greatly simplifies the equations, at the expense of
the boundary conditions which become more challenging –
the pressure velocity, ω, unlike the kinematic velocity, w,
does not generally vanish at the surface. The hydrostatic
constraint, (2.136) forms the basis for such a transformation
as in a hydrostatic atmosphere pressure effectively measures
the mass of the atmosphere above a given point in space, so
it can be thought of as a mass coordinate. Upon integration,
and by virtue of the fact that ρ is positive definite

p(x, y, z, t) = p(x, y, 0, t)− g
∫ z

0

ρ(x, y, ζ, t) dζ

is a strictly decreasing function of z, with ζ substituting for
z in the integral to avoid confusion.

In carrying out the transform it proves useful to note that
for some generic field ϑ

v = A(x, y, z, t) = A(x, y, z(x, y, p, t), t) (2.137)

= B(x, y, p, t), (2.138)

where A and B will generally have different forms. Writing
terms in this manner helps illustrate that(

∂ϑ

∂x

)
z

=
∂A

∂x

will not in general equal(
∂ϑ

∂x

)
p

=
∂B

∂x

as the terms on the lhs imply a change in the variable along
a constant height surface, and the terms on the rhs imply a
change along an isobaric surface. Rather(

∂ϑ

∂x

)
z

=

(
∂ϑ

∂x

)
p

+

(
∂z

∂x

)
p

∂ϑ

∂z
(2.139)

=

(
∂ϑ

∂x

)
p

+
1

g

(
∂φ

∂x

)
p

∂ϑ

∂z
, (2.140)

where the final expression is written in terms of the geopoten-
tial, φ. Similar forms follow for the partial derivatives with
respect to the other coordinates, y and t. Above the sub-
script z and p are used to denote in which coordinate system
the differentiation is taking place. To discriminate between
the vertical velocity in the z-coordinate system, w ≡ Dtz

the pressure velocity is defined by the symbol ω such that
ω ≡ Dtp.
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Applying this coordinate transformation greatly simplifies
the continuity equation, making it divergence free,

∇ · v = ∇p · vp + ∂pω = 0 (2.141)

This makes physical sense, because working in terms of pres-
sure, a mass coordinate, mass conservation implies that the
mass field must be divergence free. Applying the transfor-
mation to the pressure gradients terms in the horizontal mo-
mentum equations transforms these to linear functions of the
geopotential, such that

Dtvp = −f × v −∇pφ, (2.142)

where in pressure coordinates, the differential operator Dt
takes the form

Dt = ∂t + vp · ∇p.
Eq. (9.1) shows that adopting pressure as the vertical coor-
dinate eliminates density from the momentum equations.

For large-scale systems it is common to work with temper-
ature as the thermodynamic coordinate, this is convenient in
pressure coordinates where the pressure term in the enthalpy
form of the thermodynamic equation (2.10) can simply be
replaced by the vertical velocity, such that

DtT = − 1

cpe
[ω∂pφ−∇ · Fh −Qcnd] , (2.143)

where a term arising from changes in `v following the flow
has been neglected by virtue of the fact that qv � 1. The
net condensation heating, Qcnd, on the rhs of (2.143) thus is
the only term that remains to represent the effect of phase
changes on the enthalpy, and it is proportional to changes in
the water vapour specific humidity,

Dtqv = −Qcnd

`v
. (2.144)

Equations (2.141)-(2.144) are the quasi-static equations,
although the modern literature often refers to them as the
primitive equations in pressure coordinates, one could just
as well call them the Bjerknes equations. Both the Boussi-
nesq and the quasi-static equations in pressure coordinates
share a common structure. In both cases the approximations
or coordinate transforms render the momentum sources lin-
ear in thermodynamic quantities, and in both cases the flow
is purely solenoidal, i.e., non-divergent. As a practical mat-
ter this non-divergence is, however, handled very differently
in the different systems. In the quasi-static equations ω be-
comes a diagnostic quantity, except at the surface. For both
systems the equations are non-linear as a consequence of the
quadratic form introduced through the advective derivative.
This non-linearity has the effect that upon averaging the
equations, for instance to eliminate smaller scales, additional
terms, involving correlations between fluctuating quantities,
are introduced into the governing equations. This is discussed
further below.

For moist flows the primitive equations may be supple-
mented by explicit equations for the condensate mass, of
the form Dtqc = C similar to what was proposed for the
moist Boussinesq equations. Likewise, by casting (2.143) and
(2.144) in enthalpy form, neglecting variations in cpe and `v,

and summing, a moist form of the conservation law emerges,

Dtηe = ∇ · Fh + (∂t + vp · ∇p)φ. (2.145)

The equation illustrates that in addition to the divergence
of the enthalpy flux, Fh , the time rate of change of the
geopotential following the isobaric component of the flow
contributes to a change of the moist static energy, as antici-
pated in the derivation of the static energy. Often the latter
term will be neglected, in which case the equivalent moist
static energy, ηe becomes an adiabatic invariant of the flow,
much like θ` for the moist Boussinesq system.

2.5 Reynolds averaged equations

Reynolds averaging is a particular type of averaging that fa-
cilitates the isolation of large-scale degrees of freedom. For a
variety of reasons it makes sense to restrict oneself to some
subset of, usually larger, scales when studying fluid motion.
Computationally, this is motivated by a desire to limit the
degrees of freedom that must be solved for. Theoretically,
some assumptions are more readily justified (for instance
that pressure is everywhere hydrostatic) when small scales
are neglected. And on simple practical grounds, the smallest
scales of the flow, on the order of the Kolmogorov scale, are
simply not relevant for many questions. Even in turbulent
flows the fluctuations associated with a particular realisation
of a flow are often not of interest, rather the mean properties.

Let the Reynolds average of a quantity be denoted by an
over-bar. The over-bar is defined through a filtering, or av-
eraging, procedure with the following properties:

ϕ = ϕ and ϕϑ = ϕϑ, (2.146)

where ϕ is some field, and ϑ is a second field, which could also
be identical to ϕ. The filter is further assumed to commute
with other linear operators, such as differentiation in the time
or space domain. Defining the deviation from the Reynolds
averaged by the prime, so that,

ϕ = ϕ+ ϕ′ (2.147)

the above implies that

ϕ′ = 0 and ϕϕ′ = 0. (2.148)

Even with these assumptions, an application of the
Reynolds average to a non-linear quantity, such as the con-
vective derivative, introduces additional terms. For the case
of the substantial, or advective, derivative, which given the
assumption of incompressibility, Eq. (2.130) can be written
in flux form, such that

Dtu = ∂tu+∇ · (v u) +∇ ·
(
v′u′

)
. (2.149)

The last term on the rhs had no counter part in the orig-
inal equations, and is the divergence of a quantity called
the Reynolds stress, or in the case that u is a scalar, the
Reynolds flux. For small scale flows the Reynolds fluxes act
in all directions; in large scale flows it is often assumed that
the averaging is over much larger areas in the horizontal than
in the vertical. In this case it can be assumed that the flow
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is sufficiently homogeneous that the horizontal fluxes can be
neglected relative to the resolved quantities, i.e.,

∇p · (vp u)� ∇p ·
(
v′pu′

)
,

and only the vertical transport by fluctuating quantities is
retained.

2.5.1 Types of filtering

Reynolds averaging is a conceptual procedure, where the fil-
tering of the equations is thought of in terms of an average
over an ensemble of realisations of a flow. For most appli-
cations of interest a particular flow realisation is solved, for
instance by simulation, and filtering is employed to sepa-
rate small from large scales. In the case that such filtering
is applied in spectral space, with a wave-number cutoff filter
that truncates all scales smaller than a specified scale, the
Reynolds averaging rules can also be shown to hold. How-
ever, many flows are solved for in the physical domain, and
in conditions (for instance over limited areas) where spec-
tral filtering is not possible. Here the filter that is used to
separate large from small scales is usually defined implicitly,
through the numerical methods employed to solve the equa-
tion. These methods distort scales near the grid-scale and
truncate all the scales smaller than the grid-scale. But filters
based on a local stencil in physical space (like a running av-
erage) are not spectrally sharp, and thus influence a range
of scales at, and larger than, the grid-scale. For such filters
the Reynolds averaging rules usually cannot hold, but the
additional terms that arise from these imperfections of the
filters are normally neglected or assumed small compared
to the errors in the parameterisation of the terms that are
retained.

2.5.2 Turbulence kinetic energy equation

Clouds are usually turbulent, and an application of Reynolds
averaging can be used to illustrate the basic mechanisms
which control the production and dissipation of turbulence.
The resultant equation, called the turbulence kinetic energy
(TKE) equation plays an important role in the parameterisa-
tion of clouds and boundary layer processes. Because turbu-
lence kinetic energy is conceptualised as being concentrated
in eddies whose scale is much smaller than a scale height, a
starting point for its derivation is the Boussinesq equations.
An equation for the Reynolds averaged velocity can be de-
rived by writing the velocity equation, (2.132), in terms of
fluctuating and averaged quantities, averaging, and then ap-
plying the Reynolds averaging rules. So doing results in an
equation of the form

Dtv + (v′ · ∇)v′ = − 1

ρ0
∇p+ b +∇ · τ . (2.150)

where here the viscous term in Eq. (2.121) has been written
in terms of the stress tensor, which is defined as twice the
dynamic viscosity times the rate-of-strain tensor,

τ = ν
[
(∇v) + (∇v)T

]
. (2.151)

The additional term on the lhs of Eq. 2.150 arises because
the substantial derivative for the Reynolds averaged flow is
only defined with respect to the averaged flow, that is

Dt ≡ (∂t + v · ∇) . (2.152)

Subtracting Eq. (2.150) from Eq. (2.132) results in an
equation for the velocity fluctuations of the form

Dtv
′ − (v′ · ∇)v′ = − 1

ρ0
∇p′ + b′ +∇ · τ ′ − r′, (2.153)

where

r′ =
(
v′ · ∇

)
v′ +

(
v′ · ∇

)
v. (2.154)

Taking the inner product between (2.153) and v′ and av-
eraging, results in a scalar equation for the small-scale (or
turbulence) kinetic energy,

e = 1
2v
′ · v′ (2.155)

such that

Dte = − 1

ρ0
∇ · (v′p′) + v′ · (∇ · τ ′) +w′b′ − v′ · r′. (2.156)

From basic relations in vector calculus and the rules of
Reynolds averaging the second and fourth terms on the rhs
can be readily simplified, yielding the common form of the
equation for turbulence kinetic energy, wherein the evolution
of e following the mean flow is given as the balance between
the turbulent transport, production and dissipation of tur-
bulence energy,

Dte = ∇ · T + P − ε. (2.157)

The individual terms in this balance are given respectively
as

T =

[
v′e′ +

1

ρ0
v′p′ + v′ · τ ′

]
(2.158)

P = w′b′ − v′u′ · ∂xv − v′v′ · ∂yv − v′w′ · ∂zv (2.159)

ε = ν(∇v′) · (∇v′). (2.160)

An important limit of the above equations is when the av-
eraging is anisotropic, such that the horizontal scale is much
larger than the vertical scale of the averaging, as might be the
case when considering boundary layers which are homoge-
neous along the boundary. This is also the case in large-scale
models where grid-cells may be thousands of times larger in
the horizontal direction than it is in the vertical direction.
If one further assumes that the energy is contained in scales
much smaller than the largest (horizontal) averaging scale
then it is often justified to assume homogeneity in these di-
rections, so that terms involving horizontal derivatives may
be neglected. In this case the transport and production terms
simplify to the following:

∇ · T = ∂z

[
w′e′ +

1

ρ0
w′p′

]
(2.161)

P = w′b′ − u′w′∂zu− v′w′∂zv (2.162)

(2.163)

where viscous transport has also been neglected.
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2.5.3 Buoyancy production in multi-phase flows

The buoyancy term can be related to perturbations in ther-
modynamic variables, as buoyancy fluctuations are carried
by both moisture and temperature fluctuations. For instance,
given θ` and qt as thermodynamic coordinates, the buoyancy
flux can be written in terms of contributions from each, such
that

w′b′ =
1

Tρ,0

(
aθ`
∣∣
0
w′θ′` + aq|0 w′q′t

)
, (2.164)

where for a thermodynamic coordinate ϑ,

aϑ ≡
∂Tρ(ϑ, . . .)

∂ϑ
. (2.165)

This partial derivative provides a more formal basis for defin-
ing the Brunt-Väisälä frequency, as N2 = (g/z)aφ.

A definition of a first order phase transition is that the par-
tial derivatives describing the material properties of the sys-
tem are discontinuous at the phase boundary. The familiar
example being the compressibility of liquid being manifestly
different than that of vapour. Hence, the partial derivatives
relating perturbations in the density temperature to those
in the state variables will take on different values according
to whether the flow is saturated or not. For the case of an
unsaturated flow

aθ` ≈
θ

T
and aqt ≈ Tε2. (2.166)

These equations imply that for unsaturated flow, for instance
for the surface fluxes in the convective boundary layer , sensi-
ble heat fluxes are about fifteen times more efficient, per unit
of surface cooling, at accelerating the flow, as compared to
moisture fluxes. However over great expanses of the tropical
oceans latent heat fluxes are more than fifteen times larger,
meaning that latent heat fluxes contribute as much, or more,
to the surface buoyancy flux as do sensible heat fluxes.

In saturated flow, qv = qs(T, p) and qc = qt− qs. Hence in
saturated air fluctuations in the specific humidity terms that
appear in the expression for Tρ will result from fluctuations
in θ`, likewise fluctuations of qt will result in fluctuations in
T, so that

aθ` ≈
(
T

θ

)
γ and aqt = T

[(
`v
cpT

)
γ − 1

]
(2.167)

where γ, the ratio of the saturated to dry adiabatic lapse
rate, was defined in Eq. (2.85). Given typical values this im-
plies that, unlike for unsaturated flows, moisture fluctuations
are very efficient in generating buoyancy fluctuations in sat-
urated flows, but entropy fluctuations are not.

At warm temperatures the difference between aqt in sat-
urated versus unsaturated flows is about a factor of five,
increasing to twice that value at cold temperatures, where
Γs ≈ Γd. The relative effectiveness of moisture fluctuations,
in saturated versus unsaturated situations, makes physical
sense, because an increase in qt is, all things else being the
same, associated with condensation, which warms the par-
cel, thereby increasing its buoyancy. Similar reasons explain
why aθ` can be as much as a factor of two smaller in sat-
urated, relative to unsaturated conditions. Overall moisture
fluxes are an important source of boundary layer turbulence

in tropical regions, and an essential source in saturated flows,
i.e., clouds.

2.5.4 Effective heat and moisture sources, and the
gross moist stability

In this section we present some concepts that have been de-
veloped to understand the gross, or bulk, properties of large-
scale flows. The starting point for doing so are the quasi-
static equations, written in a form that neglects the isobaric
transport of geopotential. This is generally a good approx-
imation in the tropics, where horizontal pressure gradients
are weak. In this case the quasi-static thermodynamic equa-
tions for a large-scale moist flow can be written for the dry
static energy, ηd, and the specific humidity, qv as

Dtηd = −∂pω′η′d +Qcnd +Qrad = Q1, (2.168)

Dtqv = −∂pω′q′v −
Qcnd

`v
= −Q2

`v
. (2.169)

Here the over-bar denotes a Reynolds average, and horizontal
homogeneity is assumed. The source terms in the dry static
energy budget are associated with condensational, Qcnd, and
radiative heating, Qrad respectively. This formulation of the
thermodynamic equations separates the large-scale adiabatic
processes from the small scale and diabatic processes, which
are then grouped together in single terms, the apparent en-
thalpy source , Q1, and the apparent moisture sink, Q2. As
could be anticipated from the equation for the moist static
energy (neglecting changes in the geopotential and vaporisa-
tion enthalpy following along the isobaric flow), the sum of
(2.168) and the enthalpy form of (2.169) shows that

Dtηe = Qrad − ∂pω′η′e = Q1 −Q2. (2.170)

This equation provides a powerful constraint for many diag-
nostic studies, but also for modelling (see for instance Chap-
ter 5). For instance, by integrating over the troposphere,
from some ptop to psfc it demonstrates that on large-scales,
where the net import or export of moist static energy by
the advective flow can be neglected, changes in the moist
static energy are driven by surface moist static energy fluxes
(which are dominated by evaporation, equivalently precip-
itation), and the net transfer of radiant energy out of the
column, i.e.,

〈Dtηe〉 = 〈Qrad〉+ ω′η′e
∣∣∣
sfc

(2.171)

where the angle brackets denote a vertical integral, so that
in pressure coordinates,

〈ϑ〉 =
1

∆p

∫ psfc

ptop

ϑ(. . . , p) dp, (2.172)

where ∆p = psfc − ptop denotes the pressure depth of the
integral and Reynolds averaging is implicit in the definition
of the vertical average.

Expanding the first term on the lhs of Eq. (2.171) shows
that the

∂t〈ηe〉+ 〈vp · ∇pηe〉+ 〈ω∂pηe〉 = 〈Qrad〉+ (∆p)−1 ω′η′e
∣∣∣
sfc
.

(2.173)
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The vertical pressure velocity can be decomposed using
Galerkin methods, a typical example of which is the pro-
jection of the continuous vertical structure of a variable onto
orthogonal basis functions. Such a transformation, in terms
of ω is equivalent to writing

ω =

∞∑
i=1

ω̂i(x, y, t)Ωi(p) (2.174)

where the basis functions are given by the Ωi. For the sim-
ple case in which the variance of the vertical motion is well
represented by a single vertical basis function, Ω1,

ω = ω̂1(x, y, t)Ω1(p) + ω∗. (2.175)

In this case the vertically averaged moist static energy equa-
tion becomes

∂t〈ηe〉+ 〈vp · ∇pηe〉+〈ω∗∂pηe〉+ 〈ω〉G(ηe) (2.176)

= (∆p)−1 ω′η′e
∣∣∣
sfc

+ 〈Qrad〉,

which introduces the gross vertical averaging operator, G. It
is defined such that for an arbitrary variable, ϑ,

G(ϑ) ≡ 〈Ω1∂pϑ〉. (2.177)

In Eq. (2.173) the term G(ηe) has come to be called the
gross moist stability. If, in Eq. (2.173), to the extent that the
first three terms on the lhs are small and can be neglected
relative to the other terms, an equation for the amplitude
of the gravest mode of vertical motion can be derived in
terms of the energy input into the column and its gross moist
stability, such that

ω̂1 ≈
1

G(ηe)

[
(∆p)−1 ω′η′e

∣∣∣
sfc

+ 〈Qrad〉
]
. (2.178)

This equation helps illustrate the physical meaning of G(ηe)

as it defines the proportionality between the moist enthalpy
fluxes that drive the flow and the strength of the mean verti-
cal circulation. It is the moist analog to the balance in clear
skies between the dry static stability, the local radiative heat-
ing, and the vertical velocity at a point.

A similar analysis may be applied to the moisture equa-
tion. In the case advective fluxes are small compared to
evaporative fluxes (as might be expected on sufficiently large
scales), a simple balance arises such that

P − Esfc − 〈ω〉G(qv) ≈ 0 (2.179)

where Esfc denotes the surface evaporation, P = 〈Qcnd〉
is the net precipitation, and G(qv) defines a gross moisture
lapse rate. Some authors prefer to directly relate precipita-
tion to energy fluxes, and in so doing they define a different
form of the gross moist stability as the ratio

Q1

Q2
− 1. (2.180)

This is sometimes called the Normalised Gross Moist Stabil-
ity, and its apparent similarity to the efficiency of heat en-
gines is purely coincidental. Defining the ’Normalised Gross
Moist Stability’ in this fashion avoids having to make as-
sumptions about the structure of the circulation when dis-
cussing the relationship between fluxes of energy and pre-
cipitation. These and related ideas are discussed further in

Chapter 5, they also prove to be important in Chapter 13
where they are applied to understanding patterns of precip-
itation change in the tropics.

2.6 Turbulence

2.6.1 Phenomenology of turbulence

A hallmark of turbulent flows is that they distribute energy
over a broad range of scales. This can be thought of in terms
of a Fourier representation of their energy spectrum, as en-
ergy is densely distributed across scales through the non-
linearities of inertial interactions. In a flow where only one
scale is forced, for instance through an instability, the re-
sulting fluid motions excites other scales of motions through
non-linear interactions and secondary instabilities. This re-
sults in a rich range, or spectrum, of length scales becoming
evident, for instance as revealed through a Fourier decompo-
sition of the motion which quantifies how much variability
is carried by a particular scale of motion. These interactions
have a purpose, as they transport inviscid invariants of the
flow (e.g., energy) from scales where energy is excited to
scales where molecular processes operate efficiently and can
thus dissipate the energy. This type of transport across scales
is called a cascade, and it is is illustrated schematically in
Fig. 2.11 According to this view, energy is injected into the
system at a macroscopic scale l0 that drives the largest ed-
dies, inviscidly transferred to smaller eddies in the inertial
subrange, and finally dissipated into heat at the Kolmogorov
scale lK

Figure 2.11 Cartoon of energy cascade whereby energy
“cascades” inviscidly from large scales to small scales where it is
then dissipated. Here the scale of the motion is denoted by its
wavenumber k = 2π/l where l is the wavelength.

The description of fully developed turbulence as a cascade
of interacting eddies dates back to the work of Lewis Fry
Richardson in the early part of the 20th Century, and the
self-similar character of the eddies have been confirmed in
numerous experiments. Yet as of today, there is still no de-
ductive theory that derives the observed self-similar scaling
laws from the Navier-Stokes equations. Fortunately, much
of the basic behaviour of fully developed turbulence charac-
terised by a high Reynolds Number can be understood on a
simple phenomenological basis

For a turbulent flow in a stationary state, the TKE equa-
tion can be approximated as a balance between the rate of



Clouds as Fluids 61

energy injection EI at the macroscale and energy dissipation
rate ε at the microscale

∂te ≈ EI − ε ≈ 0 (2.181)

Consider now an eddy of size l with a relative velocity vl, be
defined as a velocity difference over a distance l and that is
characterised by an eddy turnover time through

tl ∼
l

vl
. (2.182)

where the symbol ∼ means “equal up to an order of mag-
nitude”. The main hypothesis, stated in the celebrated 1941
paper by Andrej N. Kolmogorov is that the rate of energy
transfer cascading from the largest eddies down to the small-
est eddies is constant and approximated by the mean dissi-
pation rate ε. The transfer of energy in the inertial range
lK < l < l0 can be intuitively interpreted as the flux of tur-
bulent kinetic energy e ∼ v2

l from an eddy of size l cascading
down to the smaller eddies.

Figure 2.12 Schematics of the breakdown of a turbulent eddy
of size l into smaller eddies.

Taking the eddy turnover time tl as the typical timescale
during which the eddy breaks up into smaller eddies
(Fig. 2.12), the transfer of energy can be written as

el
tl
∼ v3

l
∼ ε ∼ cnst (2.183)

so that

vl ∼ ε1/3l1/3 ∝ l1/3 (2.184)

which is a shorthand for one of the main results of Kol-
mogorov’s 1941 theory, K41. A number of key properties
directly follow from K41. First K41 shows that the veloc-
ity field in turbulence is self-similar and described with an
exponent h = 1/3. This implies that the gradient of the ve-
locity field would be singular everywhere for small l if there
would not be a Kolmogorov dissipation scale where diffusion
becomes dominant. Diffusive effects can be neglected only
ifthe eddy turnover time tl is much smaller than the diffu-
sion time scale tl,diff ∼ l2/ν, but because the diffusion time
scale goes to zero faster than the eddy turnover time, there
will always be a scale at which diffusion becomes dominant.
Equating the diffusion and the eddy turnover time gives as
an estimate for this Kolmogorov dissipation scale

lK ∼
(
ν3

ε

)1/4

. (2.185)

The range of scales between the outer scale at which the en-
ergy is injected and the Kolmogorov scale is dictated by the

integral-scale Reynolds Number Re = UL/ν where U denotes
the relative velocity scale related to the largest eddies. By
estimating the energy dissipation rate as the energy transfer
rate at the outer scale, i.e. ε ∼ U3/L and using Eq. (2.185)
the ratio between L and lK scales with the Reynolds Number
as

L

lK
∼ Re

3/4. (2.186)

A typical convective atmospheric boundary layer of
L∼1 km depth and a typical relative velocity scale at this
outer scale of 1 m s−1 is characterised by a Re ∼ 108, which
justifies the value presented in the scale analysis of §2.4.1.
This value of Re implies a Kolmogorov scale of the order of
1 mm. This simple example shows the enormous range of
spatial scales, six orders of magnitude, over which the K41
scaling behaviour of the velocity field extends. The scaling
behaviour K41 can be easily reformulated into the famous
5/3 energy spectrum by taking the Fourier transform of the
turbulent kinetic energy el ∼ v2

l

e(k) ∼ ε2/3k−5/3 = αKε
2/3k−5/3 (2.187)

where the wavenumber k can be associated to the inverse
eddy size, i.e. k ∼ 1/l. The energy spectrum demonstrates
that the largest eddies are the most energetic. Universality
requires that the proportionality constant αK to be indepen-
dent of the particular flow. This prediction is well supported
experimentally with αK = 1.6 being called the Kolmogorov
constant. At present there exists no accepted theory which
explains the value of Kolmogorov’s constant. The lack of such
a theory is the quintessential problem of turbulence.

As will be demonstrated in Chapter 5, the self similarity of
atmospheric turbulence allows the possibility of realistically
numerical modelling at relative coarse resolutions of around
100 m. Such Large Eddy Simulations resolve only the largest,
most energetic eddies, whereas the smaller unresolved eddies
can be realistically parameterised in terms of the resolved
large eddies through the use of K41

2.7 Models of clouds and circulation

For the most part, the equations required to describe clouds
are known. This means that a great deal of insight into the
role of clouds in the climate system can be attained by ex-
ploring the behaviour of these equations under different cir-
cumstances. This approach, whereby equation systems de-
scribing cloud systems are used to construct virtual laborato-
ries from which insights are derived, is the dominant research
methodology at the present time.

Two challenges however limit the insights that can be
derived from these approaches, and continue to necessi-
tate a strong connection with observations. One is that not
all the equations are known. In particular on microscopic
scales many of the interactions among particles, and be-
tween the gas and particle phases especially with respect to
ice-processes, are still poorly understood. This issue is even
more manifest when it comes to describing the interaction
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Figure 2.13 Physical length-scales in the atmosphere, and
processes associated with them. Different classes of models are
here characterised by the size, ∆, of their grid mesh, which is
related to the smallest scales that they can represent.

of the atmosphere with other components of the climate sys-
tem, for instance the biosphere. The other challenge is that
even if the equations were all known they would encompass
far too many degrees of freedom to ever contemplate solving,
even given computers with computing capacities millions of
times more powerful than what is presently possible. These
challenges mean that the simulation systems used as virtual
fluid dynamical laboratories of cloudy atmospheres are nec-
essarily approximate.

The approximations made to render a fluid-dynamical de-
scription of a cloudy atmosphere computationally tractable
are manifold: (i) some truncation of scale; (ii) an aggregated
description (parameterisation) of the behaviour of particu-
late matter and condensate; (iii) a simplification in the treat-
ment of radiative transfer. In addition, to close the equa-
tions inevitably involves developing approximate models de-
scribing interactions with other components of the climate
system, for instance the surface, as well as the behaviour
of degrees of freedom that, because of the scale truncation,
are not explicitly represented. The different types of cloud
dynamical models are distinguished mostly by the first ap-
proximation, namely at what scale they truncate the fluid-
dynamical equations. Fig. 2.13 illustrates the range of scales
within the atmosphere, processes associated with different
scales, and the names associated with models that truncate
their equations at a given scale. Because the range of pro-
cesses included by a particular truncation differs depending

on the scale of the truncation these different types of models
differ, as discussed below, qualitatively from one another.

2.7.1 Direct numerical simulation

Simulations based on fluid-dynamical descriptions that re-
solve eddies down to the Kolmogorov scale are called Di-
rect Numerical Simulation, or DNS. DNS is the most funda-
mental description of fluid dynamical transport, but because
computational restrictions limit the largest space and time
scales that can be represented, it is also the most special pur-
pose. Advances in computing power has, however, begun to
make it possible to use DNS over large-enough domains that
it has become applicable to problems of interest to atmo-
spheric scientists, up to and including boundary layer scales.
Because it is applied to problems whose largest scales are still
relatively small, DNS is often based on the Boussinesq ap-
proximation, which on the scales usually represented can be
asymptotically justified. But for some DNS the full compress-
ible equations, or even two-fluid equations, may be applied.
In DNS a main hypothesis is that of Reynolds Number sim-
ilarity, which states that once a sufficiently large Reynolds
Number is achieved then important statistical properties –
like vertical profiles of mean and variances of temperature
and specific humidities – cease to depend on the Reynolds
Number. Even in the case that Reynolds Number similarity
is a good assumption, DNS remains limited by many of the
same limitations of models that more approximately repre-
sent the fluid-dynamical equations, namely simplifications in
the coupling to realistic boundaries, or necessarily approx-
imate descriptions of microphysical processes and radiative
transfer. Despite these limitations which DNS shares with
other types of cloud circulation models DNS is emerging as
not just an exciting method for studying classic boundary
layer flows, but also for studying cloud mixing processes and
the interactions among turbulence, cloud-microphysical pro-
cesses and radiant energy transfer.

2.7.2 General circulation models

General Circulation Models, or GCMs, are usually based on
the primitive equations, and applied to the global atmo-
sphere in a way designed to explicitly represent the main
mechanism, baroclinic instability, of meridional heat trans-
port in the mid-latitude troposphere (see Chapter 10). Be-
cause baroclinic eddies have a scale of about 1000 km, they
can be well resolved by models using a grid whose mesh-
size is on the order of a few hundreds of kilometres or finer
(Fig. 2.13). General Circulation Models are a cornerstone
of numerical weather prediction, and also serve as the dy-
namical core of the atmosphere in Global Climate Models.
The identical initialism (GCM) for Global Climate Models
and General Circulation Models – upon which they are of-
ten based – is a source of ambiguity, here it is restricted
to mean the latter. In GCMs the vertical heat transport,
associated with a cascade of processes ranging from near
surface turbulent eddies, to boundary layer circulations, to
deep convective clouds, and even cloud systems, are not at all
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resolved, and must be approximated through parameterisa-
tions. The approximate, and generally inadequate, represen-
tation of vertical heat and moisture transport and of cloud
processes in GCMs also influences their ability to properly
represent radiant energy transfer through the atmosphere,
something which is vital for an adequate representation of
the climate system. Over the years a great deal of effort,
as reviewed in Chapter 6, has been expended in better un-
derstanding how the process of vertical heat and momen-
tum transport by eddies (and waves) is related to the mean
state of the larger-scale flow that GCMs explicitly represent.
Their chief limitation relative to smaller-scale models is the
uncertainty of these processes, and their importance for the
large-scale flow. This is especially true in the tropics, where
moist cumulus convection and radiant energy transfer inter-
act strongly with the circulation The main advantage of the
GCMs is that they provide a closed fluid-dynamics descrip-
tion of the transient dynamics of the large-scale flow, whose
statistical properties define Earth’s climate.

2.7.3 Storm-resolving models

Storm-resolving models, SRMs, typically forgo a global de-
scription so as to allow for sufficiently fine scales to resolve
the vertical overturning of the troposphere. This then per-
mits them to crudely, but explicitly, represent convective
storms that reach through the depth of the troposphere –
even when such storms adopt commensurately fine horizon-
tal scales, as for the case of precipitating deep convection
in the tropics. This implies that an SRM must have a spa-
tial resolution commensurate with the depth of the tropical
troposphere, and hence grid-mesh spacings on the order of
a few kilometres. The requirement of such a fine grid-mesh
generally limits the domain of SRMs to be on the order of
hundreds to a few thousands of kilometres. SRMs are often
based on the anelastic equations, but sometimes solve the
fully compressible equations.

The great advantage of storm-resolving models is that
their explicit representation of at least the gravest modes
of convective heat transport in the troposphere allows for a
more consistent representation of circulation features that of-
ten accompany such storms, from cold pools and gust fronts,
to stratiform cloud shields. It also more naturally allows
these circulation systems to be coupled with parameterisa-
tions of cloud microphysical processes and radiant energy
transfer. Unlike a GCM, whereby most parameterisations
must be coupled with one another, in SRMs, at least for
the deepest clouds, parameterisations of cloud microphysical
processes and radiation can interact with circulations that
the model explicitly, albeit crudely, resolves. In the literature
other SRMs are often referred to using different names: for
instance Cloud Resolving Models (CRMs,; Cloud System Re-
solving Models (CSRMs); or Convection Permitting Models
(CPMs). Some authors distinguish between ‘Cloud Resolv-
ing’ and ‘Convection Permitting’ Models by virtue of how
they parameterise yet finer scale processes. Because the dis-
tinguishing factor of SRMs is their ability to resolve storms,
meaning primarily the circulation (wind) systems and ge-
ometric features of tropical convection, but not necessar-

ily the finest scales of associated clouds or convection, the
SRM nomenclature is adopted in this text. By definition, an
SRM does not include a parameterisation of deep convec-
tion. However, vertical heat transport arises on many other
scales, for instance from the large eddies within the atmo-
spheric boundary layer, or from shallow convective clouds
which might reach a depth of a few kilometres, and must
be parameterised in an SRM, a process that shares many of
the complexities and pitfalls of the parameterisation of deep
convection, albeit in a way that is hopefully less strongly cou-
pled to the large-scale flow. Most SRM simulations also need
to parameterise (or specify) the large-scale flow, for instance
by relaxing it back to some presumed state, or by nudging
it to lateral boundary conditions that are taken from an-
other source. SRMs are being increasingly applied to study
large-scale problems in geophysical fluid dynamics, and in
so doing provide a better foundation for understanding the
ways in which cloud processes affect these dynamics.

2.7.4 Large-eddy simulation

Large-eddy simulation, or LES, differs from SRM simula-
tions in that it endeavours to resolve also the large eddies
responsible for the heat and momentum transport within
the atmospheric boundary layer , which for convective sit-
uations may be between 500 m and a few kilometres. This
implies a spatial resolution of about 500 m, and hence a grid
mesh size of about 100 m or less, which is still much larger
than the Kolmogorov scale. As long as the large-eddies are
well resolved, LES has the advantage that the smaller scale
motions which are not resolved can often be assumed to be
representable in a universal way based on an understanding
of the phenomenology of homogeneous and isotropic turbu-
lence, as discussed in Section 2.6.1. Because LES resolves the
turbulent circulations on the cloud scale, it is thought to pro-
vide an adequate description of mixing processes associated
with cumulus clouds, and to provide a strong foundation for
linking radiative transfer to explicitly resolved clouds, and
microphysical processes to explicitly resolved circulations.
However, even when run at resolutions of a few meters, some
mixing processes remain poorly represented within LES, es-
pecially those in regions of strong stratification, as one finds
atop stratocumulus topped boundary layers (Chapter 5) and
in nocturnal boundary layers. Such a fine spatial resolution
also precludes a consideration of many meso- and large-scale
processes, as historically LES domains have been on the or-
der of kilometres. This means that LES usually neglects, or
at least distorts, the way in which processes on the small
scale influence the mesoscale in ways that may feed back
and influence the small-scales. Like SRMs, LESs are also us-
ing equation sets that allow them to simulate flows over a
deeper atmosphere and are being applied to ever larger do-
mains, thereby providing insight into how cloud and bound-
ary layer processes induce and influence circulations on meso
(10 km to 100 km) scales.
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2.8 Outlook

Although it might seem that the foundations of a fluid dy-
namical description of clouds is more or less worked out,
there are several interesting and active areas of open re-
search. In terms of the thermodynamics, basic questions re-
lating to a consistent but simplified representation of non-
equilibrium components of multi-phase flows remain to be
clarified. This involves not only thermal effects, for instance
associated with multi-phase particles (melting snow and
graupel), but also dynamic effects when particles decouple
from the flow. Only recently has research begun to attempt
a full accounting of the entropy production in association
with non-equilibrium phases and much work remains to be
done, for instance in association with the entropy production
by cloud microphysical processes.

Better understanding how to measure the energy available
to convection, even in idealised frameworks, is an area where
more research would be beneficial. Is there an optimal def-
inition of convective available potential energy, the state to
which a convecting atmosphere attempts to relax to, or the
time-scale on which they relax? In this context many basic
problems related to the stability of convecting atmospheres,
and the implied asymmetries between upward (saturated)
and downward (unsaturated) motion remains open. Here the
advancing power of DNS to explore instabilities in moist at-
mospheric flows, and the nature of turbulence in multiphase
atmospheric flow is very promising. At the same time more
research is needed on conceptual models capable of better
elucidating constraints on moist systems arising from the
Second Law .

An exciting open area of research, called forth by the in-
creasing computing power, is how to create soundproof equa-
tion systems that are energetically consistent on very large
domains, and which consistently represent the multi-phase
thermodynamics. Most asymptotic approaches to these prob-
lems remain focused on dry atmospheres and fail to consis-
tently represent moist and microphysical processes. On the
larger scales the moist static energy framework is promising
and a better understanding of how the energetics of the flow
couple to the circulation using this framework is an exciting
and popular area of research, but here the role of shallow
circulations, which such a framework endeavours to neglect,
emerges as a key question.

Advances in computing power are beginning to blur
the lines between traditional modelling frameworks. Recent
years have witnessed the advent of hybrid models that em-
bed LES or SRMs in GCMs, through an approach referred
to as super-parameterisation (Chpt 6). Even more recently,
very highly parallelised computations run on tens and even
hundreds of thousands of processors have begun to make it
possible to perform LES on grid-scales of a hundred meters,
across domains of more than a thousand kilometres, for pe-
riods of weeks, or to run SRMs over the entire globe, thereby
superseding GCMs, for periods of days to weeks. Along with
DNS, the ability of these very computationally intensive ap-
proaches to encompass the interaction of a wide range of

Table 2.6. Constants for Tetens’ formula, as given in
Eq. 2.190, for saturation vapor pressure over liquid water
and ice.

state a b [K]
water 17.2693882 35.86
ice 21.8745584 7.66

scales make them very exciting tools that are beginning to
shed new light on how clouds and circulations interact.

Exercises

1. Show that choosing a reference state enthalpy for both
he and h` determines the reference state vaporisation en-
thalpy. What is `v,0 if one assumes that hl(T0e) = clT0,e

and hv(T0,`) = cpvT0,`?
2. Show that if in equilibrium h and T adopt values that

maximise the entropy function s , then this implies that
the Gibbs potential, g is minimised.

3. Assuming that the specific heats are constant, use the
values in Table 2.3 to show that the reference entropy
for liquid water at 0 ◦C is 3.518 kJ kg−1 K−1 and that for
solid ice at the same temperature it is 2.298 kJ kg−1 K−1

4. If the energy is removed by internal, turbulent, dissipation
(E) then this represents an additional source of heating
that must be accounted for, i.e., the first law of thermo-
dynamics becomes

W = E +Q1 −Q2. (2.188)

and the second law
Q1

T1
=
Q2

T2
− E
TE
−∆Sirr. (2.189)

Show how in steady state, if the dissipation happens near
the lower boundary, at a temperature TE = T1 this implies
a system that does more work than a Carnot engine. Why
doesn’t this contradict the second law?

5. In deriving the Clausius-Clapeyron equation it is assumed
that `v/T = sv − sl. Demonstrate that this is true in the
case of a saturated system.

6. Tetens’ originally formulated the saturation vapor pres-
sure as

ps = ps(T∗) exp

[
a(T − T∗)
T − b

]
(2.190)

where T∗ = 273.16 K is the triple point temperature, so
that ps(T∗) = 610.78 Pa. The fitting parameters, a and
b, are given in Table 2.6 for saturation over liquid water
and ice respectively. Compare this form to that given in
Eq. (2.73).

7. Derive an expression for the saturation pressure over liq-
uid by assuming: (i) `v is constant, and (ii) by allowing
`v to varies with T following Kirchoff’s relation. Compare
these to Tetens’s formula as give in Eq. (2.73) and the ref-
erence fit by Goff and Gratch as summarized by Murphy
and Koop (2005).
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8. Derive γ` and Ω`, which appear in Eq. (2.46) which defines
the liquid-water potential temperature.

9. Fill in the steps of the derivation of the ice-liquid potential
temperature as given by Eq. (2.66).

10. Starting from Eq. (2.38), derive Eq. (2.83), stating all
assumptions.

11. By deriving an equation for the equisaturation line on a
Skew-T diagram calculate the change in the dew-point
depression with height for adiabatic ascent. Use this to
derive an expression for the LCL of a parcel with a given
dew-point depression.

12. Assume that surface fluxes are well represented by the
bulk aerodynamic formulae,

w′ϑ′ = C‖v10m‖ (ϑ10m − ϑsfc)

where ϑ is a generic scalar quantity, like temperature or
moisture. Estimate the height of the lifting condensation
level given the surface latent and sensible heat fluxes, as-
suming a drag coefficient, C, of 0.001. State any addi-
tional assumptions that you may have to make to arrive
at a solution. Does the expression depend on wind speed,
or sea-surface temperature?

13. Assuming that in the tropics the temperature profile fol-
lows the saturated isentrope corresponding to saturation
over the warmest surface waters. If δηe measures the dif-
ference between the surface moist static energy and that
in the free troposphere derive an expression for δηe as
a function of the deviation from the warmest sea-surface
temperatures. Does this expression depend on the temper-
ature of the warmest waters, or only on the temperature
difference?

14. Derive an expression for the rate at which ql increases
with height for adiabatic ascent.

15. Assuming an atmospheric thermal structure wherein
ηe,s) = 335 kJ kg−1 assuming ce = cd, at what altitude is
qs less than qCO2

assuming a pre-industrial concentration
of CO2 of 280 ppm.

16. Derive an energy principle for the Boussinesq system.
17. For a more general fluid the deviatoric forces can be ex-

pressed more generally in terms of a stress tensor τ so that
the viscosity term in Eq. 2.121 is instead written in terms
of the divergence of this stress tensor, cf. Eq. (2.150).
Using the definition of the incompressible stress tensor
demonstrate that the dissipation term (Eq.2.160), is non-
negative. For these manipulations it proves useful to use
tensor notation, such that

τ = µ

[
∂ui
∂xj

+
∂uj
∂xi

]
.

18. In Eq (2.145) show that the term involving the gradient of
the geopotential can be related to the change in the kinetic
energy of the flow. How can one interpret the energetic
effect of the time derivative of the geopotential?

19. By adopting typical pressure gradients in the tropics, or
the extra tropics, calculate to what extent it is reasonable
to neglect geopotential gradients along pressure surfaces
when calculating the evolution of ηe in Eq. (2.145).

20. Using the reanalysis calculate the EOFs of the monthly
mean vertical velocity field in the tropical atmosphere

over the ocean. How much variance does the leading
mode, ω1 explain. What is the wind profile associated
with this vertical mode? How do the EOFs vary if one
compares EOF calculated over climatological subsidence
versus convective regions?

Further Reading

Section 2.1 Thermodynamics:

The subject is treated in many introductory meteorologi-
cal texts, but in most cases poorly. The best introductory
guide to classical thermodynamics is given by the short se-
ries of lectures by Enrico Fermi (1956), which is published
by Dover. This book provides a readable and elegant pre-
sentation of basic thermodynamic concepts, from a classi-
cal perspective. Although the treatment is general, many of
the particular concepts of atmospheric thermodynamics, for
instance the derivation of the potential temperature or the
Clausius-Clapeyron equation, are readily extracted from this
book. The definitive modern treatment of classical thermo-
dynamics, with extensions to statistical mechanics, is pro-
vided in Herbert B. Callen’s beautiful book entitled Ther-
modynamics and an Introduction to Thermostatics (Callen,
1985) in particular for its more elegant and modern presen-
tation of the laws and their relationship to the existence of
quantities like entropy or enthalpy. For a discussion of partic-
ular concepts related to atmospheric thermodynamics, and in
particular the special role played by moisture, students and
practitioners will be well served by the classic (but out of
print) book by Iribarne and Godson (1981) or the introduc-
tory chapters of Atmospheric Convection by Kerry Emanuel
(1994). The latter has particularly clear discussions of the
moist potential temperatures.

Papers by Pauluis and Held (2002a,b) on the entropy bud-
get of radiative convective equilibrium are an excellent and
definitive introduction to an entropy view on the atmospheric
circulation. The paper by Kleidon and Renner (2013) pro-
vides a very clear overview of the use of entropy and maxi-
mum power concepts to understand the hydrological cycle.

Section 2.2 Thermodynamic Diagrams

Visualising the state of the atmosphere, and the develop-
ment of thermodynamic processes on thermodynamic dia-
grams can be a useful way to develop understanding. In ad-
dition to Iribarne and Godson (mentioned above) a recent
paper by Böing et al. (2014) provides insight into the use of
thermodynamic diagrams for the study of mixing processes.

Section 2.3 Moist convective instability:

This section is presented in a rather untraditional way, start-
ing from the small scale mixing process associated with what
has come to be known a buoyancy reversal. This basic con-
cept has a long history in the literature, but a beautiful and
influential presentation of the ideas can be found in a 1980
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paper by David A. Randall (1980) The title alludes to the
fact that buoyancy reversal is related to traditional ideas of
convective instability, the treatment and different measures
of which are well presented in the aforementioned book by
Emanuel. Buoyancy reversal has always been thought to be
an important concept for stratocumulus clouds, and recent
work on the topic by Juan Pedro Mellado (2010; 2017) pro-
vides the most insightful contributions on the topic from the
point of view of fundamental fluid dynamics, as this work
has helped clarify long-standing uncertainty related to the
role of buoyancy reversal in cloud mixing.

Section 2.4 Fluid Dynamics:

Fluid dynamics is a vast topic. A very good basic text on ba-
sic fluid mechanics is that by Kundu and Cohen (2002) for
which the early editions are perfectly adequate. For a com-
plete treatment of multi-phase flows, including discussion of
the many intricacies associated with the treatment of parti-
cles, the article by Peter Bannon (2002) is a good reference.
In deriving the Boussinesq or other sound-proof equation
systems asymptotic techniques are employed. For a guide
to asymptotic approaches in fluid mechanics, through which
many of the equation sets used to describe flows in the atmo-
sphere and ocean can be derived, the reader is referred to a
recent review article by Rupert Klein (2010). Although work
on these topics might seem academic, the question of sound-
proof equation sets that relax the requirements on the basic
state are coming increasingly into focus as numerical simu-
lation is capable of solving flows with an increasing number
of degrees of freedom, which allows for a treatment of small
scales over very large domains wherein the background state
might be expect to vary greatly.

For an introduction to Reynolds averaging (or filtering
approaches in general) and turbulence most books on tur-
bulence will provide a good introduction. Perhaps the best
book on the topic with an atmospheric perspective in mind
(for a consideration of Reynolds Averaging, and higher order
equations) is the book by Wyngaard (2010). Stephen Pope’s
book (Turbulent Flows, Cambridge University Press, 2000)
has become a standard text on turbulence, but the beauty of
the subject is perhaps better captured by the Uriel Frisch’s
Book (Turbulence, the Legacy of A. N. Kolmogorov, Cam-
bridge University Press, 1996) which influenced the presen-
tation of the turbulence cascade in §2.6.1. G. I. Barenblatt’s
book (Scaling, self similarity, and intermediate asymptotics,
Cambridge, 1996) is an excellent introduction to similarity
theory. None of these texts adequately cover moist, or multi-
phase, turbulent flows as appropriate for clouds.

The discussion of effective heat and moisture sources, orig-
inates in the pioneering analysis of Michio Yanai, beginning
with his 1973 paper (Yanai et al., 1973). The idea of gross
moist stability was introduced by Neelin and Held (1987). A
useful and more general review is provided by David Ray-
mond et al. (2009).
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Table 2.7. Symbols and key variables used in this chapter

Symbol Description Units (SI)
v ,V specific volume, volume m3 kg−1, m3

s , S specific entropy, entropy Eq. (2.28) J kg−1 K−1, J K−1

h ,H specific enthalpy, Eq. (2.11) J kg−1, J

g,G specific Gibbs free energy, Gibbs free energy G = H − TS J kg−1, J

δQ Heating J

aϑ ∂ϑTρ, Eq. (2.165)
b buoyancy m/s2

ce Eq. (2.22), equivalent-state cp J kg−1

c` Eq. (2.26), liquid-state cp J kg−1

e Turbulence kinetic energy m2 s−2

ηd Dry Static Energy J kg−1

ηe Moist Static Energy Eq. (2.51) J kg−1

η` Liquid-Water Static Energy Eq. (2.52) J kg−1

ηs Saturation ηe J kg−1

κ1 Interfacial stability criterion –
κ2 Buoyancy Reversal parameter, Eq. (2.102) –
k Wavenumber, 2π/wavelength –, or rad m−1

l Size, of an eddy. m

E Turbulence energy spectral density m s−2

N2 Brunt-Väisällä frequency, Eq. (2.89) s−1

N2
s N2 in saturated air Eq. (2.91) s−1

Q1 Apparent enthalpy source J kg−1 s−1

Q2 Apparent moisture sink kg kg−1 s−1

Qcnd Net condensational heating J kg−1 s−1

Qrad Radiative heating J kg−1 s−1

Re Equivalent-state gas constant J kg−1 K−1

R` Liquid-state gas constant J kg−1 K−1

Γs Saturated adiabatic lapse rate K m−1

Γd Dry adiabatic lapse rate K m−1

αK Kolmogorov constant –
βϑ (ϑ/qs) ∂ϑqs e.g., Eq.(2.81) and (2.82) –
ε1 Rd/Rv ≈ 0.622 –
ε2 Rv/Rd − 1 ≈ 0.608 –
ε Dissipation rate of turbulence kinetic energy m2 s−3

γ Γs/Γd, Eq. (2.85) –
χ Mixing Fraction –
µ Dynamic viscosity N s m−2

pθ Reference pressure, 10× 105 Pa Pa

φ Geopotential, gz J kg−1

lK Kolmogorov microscale m

ν Kinematic viscosity m2 s−1

ϑ Generic Variable [ϑ]
a Convective area fraction Fig. 2.10 –
M Convective Mass Flux Eq. (2.110) kg m−2 s−1

A CAPE Eq. (2.105) J kg−1

I Convective Inhibition, Eq. (2.107) J kg−1

D Eq. (2.108), Downdraft CAPE J kg−1

G(ϑ) Gross lapse rate operator Pa−1 [ϑ]
P Mean production of turbulence kinetic energy J kg−1 s−1

T Mean flux of turbulence kinetic energy J m kg−1 s−1

Fh Diabatic enthalpy flux J m s−1 kg−1

τ Stress tensor m2 s−2

v Velocity vector (u, v, w) m s−1

Re Reynolds Number UH/ν –




