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02 - measurements and modelling
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1. Physical properties and principles of climate system
2. Measurements and observations
3. Climate modeling
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THE EARTH is illuminated by shortwave SOLAR radiation, which is partially
absorbed and partially reflected.

In (quasi) equilibrium energy of absorbed radiation is balanced by emission
in thermal infrared.
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ENERGY IN CLIMATE SYSTEM
1. Solar energy flux = ¥ of Solar constant
1/4*1362W/m? = 341W/m?.

2. Earth's surface albedo, mean =0.3, highly variable,
from 0.9 (fresh snow) to 0.07 (clean ocean).

3. Geothermal energy flux =0.092W/m?.
4. Heat flux from fossil fuel combustion =0.026W/m?.

BASIC PROPERTIES OF THE CLIMATE SYSTEM

1. Air: surface pressure =1000hPa (10m of water),
Co=1004)/kg*K.

2. Water: global average depth = 3000m, c,=4192)/kg*K.

3. Ground - only a shallow layer responding to radiative fluxes.

4. Greenhouse gases: H,0, CO,, CH4, O3, many others.



Forcings and feedbacks in climate system.

Climate forcings are the initial drivers of a climate shift.
Examples: solar irradiance, changes in the planetary orbit, anthropogenic or volcanic
emissions of greenhouse gases.

Climate feedbacks are processes that change as a result of a change in forcing,
and cause additional climate change. Examples : ice-albedo feedback, CO2
solubility.

Feedbacks can be positive or negative.
Positive feedbacks, when exceeding thresholds, may lead to rapid climate changes.

There are indications in paleoclimatological data that such changes occurred in
geological history of the planet.
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http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php World Meteorological Organization

Atmosphere: Over 11,000 weather stations, as well as e
satellites, ships and aircraft take measurements.

1040 of stations are selected to provide high quality climate data.

There are special networks at national (e.g. Reference Climate Stations), regional
(e.g. Regional Basic Climatological Network) and global scales. (e.g. the Global
Cllmate Observmg System GCOS Surface Network, GSN)

Voluntary ship observations Aircraft based observations


http://www.wmo.int/pages/themes/climate/climate_observation_networks_systems.php

OCEAN:
ARGO project: temperature and salinity profiling, deep sea currents.
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OCEAN:

ARGO project: temperature and salinity profiling, deep sea currents.

Thousands of
automatic
profilers
provide actual
data from the
world ocean.

http://www.argo.ucsd.edu/
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BULGARIA (6)
CANADA (149)
CHINA (57)
EUROPE (100)

National contributions - 3885 operational floats

September 2022

Latest location of operational floats (data distributed within the last 30 days)
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About NASA's Earth Observing System

The Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclinaticn satellites for
long-term global observations of the land surface, bicsphere, solid Earth, atmesphere, and oceans. EQS
a major component of the Earth Science Division of NASA's Science Mission Directorate. EOS enables an
improved understanding of the Earth as an integrated system. The EQOS Project Science Office (EQSPS0)
is committed to bringing proegram information and rescurces to program scientists and the general public
alike.

observing the earth

Download 2012 NASA Science Mission Directorate Calendar Screen Sawver NEW!
EOS Announcements

The Earth Observer Newsletter online is now available in color]
February 17. 2011
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Satellites offer a wide variety of valuable services. These include communications and weather
observation, which are essential to modemn life, as well as astronomical observation and space

pment. Japanese now in orbit are performing missions in a wide range of areas.
For exampie, they have been playing an important role in assessing and analyzing abnormal
weather patterns. For the purpose of planetary exploration, plans are under way for sending probes
to the Moon and Mars.
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Observations - summary

Temperature anomaly OHC change
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Change in effective radiative forcing from 1750 to 2019

Carbon dioxide

Other well-mixed
greenhouse gases

Ozone

Stratospheric
water vapour

Albedo

Contrails & aviation-
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Light absorbing particles on
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https://www.ipcc.ch/report/ar6/wg1/

ERF (W m~2)

2.16 [1.90 to 2.41]

0.54 [0.43 to 0.65]
0.21 [0.18 to 0.24]

0.47 [0.24 to 0.71]

0.05 [0.00 to 0.10]

-0.20 [-0.30 to -0.10]
0.08 [0.00 to 0.18]

0.06 [0.02 to 0.10]

-0.22 [-0.47 to 0.04]
-0.84 [-1.45 to -0.25]

2.72 [1.96 to 3.48]

-0.02 [-0.08 to 0.06]



Simu!ated temlperature‘contributlions in 291 9 relatilve to 1750 e

Carbon dioxide

Other well-mixed
greenhouse gases
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Stratospheric
water vapour

Albedo

Contrails & aviation-
induced cirrus

Aerosol
Solar
Volcanic

Total

| Light absorbing particles
on snow and ice

Aerosol-cloud Aerosol-radiation

1.01 [0.74 to 1.41]

0.28 [0.19 to 0.39]
0.10 [0.07 to 0.14]

0.23 [0.11 to 0.39]

0.02 [0.00 to 0.06]

-0.11 [-0.18 to -0.05]
0.04 [0.00 to 0.10]
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0.02 [0.01 to 0.05]

-0.13 [-0.28 to -0.01]
088 [-[0.77 to -0.12]

Beeeeees 1 Forcing uncertainty
Forcing + climate
sensitivity uncertainty

-0.01 [-0.04 to 0.04]
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Units Wm -2

Solar Thermal
incoming outgoing

atmospheric
window

‘ o s house
absorbed latent heat y green
atmosphere Y M. gases

-

82 21
imbalance . (72,85) (16, 24)

_ 27 - Saurface  evaporation sensible up surface down surface
= S O0) = heat

Energy balance of climate system. Units: W/m?.  hps://www.ipcc.ch/report/ar6/wg1/




Net TOA Radiation or

Energy imbalance increases ...
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Schmidt GA, et al., 2023, CERESMIP:
a climate modeling protocol to
investigate recent trends in the
Earth's Energy Imbalance. Front.
Clim. 5:1202161.
httfs://doi.org/10.3389/fclim.2023.12
02161
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Why particles with 3 or more atoms absorb
long-wave (low energy) radiation?
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CO; Concentration (ppm)

Global Stations

Carbon Dioxide Concentration Trends
Data from Scripps CO2 Program Last updated September 2022
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€O, Flux (GtCO, yr™)

Emissions and their Partitioning since 1850 Cumulative Emissions and their Partitioning since 1850
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8'3C (per mil)
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Climate modeling: a virtual planet

geophysical fluid dynamics

Horizontal grid thermodynamics
e Verial radiative transfer
Vertical grid Ei‘;”ri"” Chemistry equations

Height or pressure

boundary conditions

model equations

Physical processes in a model
Atmosphere

Horizontal sk

oo , W oo numerical code
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virtual reality allowing for simulating
climate
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The development of climate models over the last 35 years

Mid-1970s Mid-1980s FAR SAR TAR AR4 ARS
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Predictability of weather and climate

Edward N. Lorenz (1917-2008):

Selected papers:

,Deterministic nonperiodic flow”, 1963
(sensitivity of solutions to initial conditions: “butterfly effect’
attractor)

,1he problem of deducing the climate from the governing equations”, 1964
(long term predictability — obcertainties in the governing equations)

,Climatic change as a mathematical problem”, 1970
(unpredictable weather does not mean that climate is not predictable)

,Predictability — a problem partly solved”, 2006



Predictability of weather and climate — illustration:
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b) Change in global surface temperature (annual average) as observed and
simulated using human & natural and only natural factors (both 1850-2020)
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Model validations:

Annual-mean cloud
radiative effects of the
CMIP5 models compared
against the measurements
(CERES

EBAF 2.6) data set (in W m~
2: top row: shortwave effect;
middle row: longwave
effect; bottom row: net
effect).

On the left are the global
distributions of the muilti-
model-mean

biases, and on the right are
the zonal averages of the
cloud radiative effects from
observations.

Model results are for the
period 1985-2005, while
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http://www.climatechange2013.org/report/

Model ensembles vs. observations.
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(Top) Observed and simulated global mean surface temperature (GMST) trends in degrees Celsius
per decade, over the periods 1998-2012 (a), 1984-1998 (b), and 1951-2012 (c). For the observations,
100 realizations of the Hadley Centre/Climatic Research Unit gridded surface temperature data set 4



Arguments, that climate model provide valuable information:

1) the models can reproduce the current climate;

2) the models can reproduce the recent observed trends as well as the more distant past;
3) the models are based on physical principles;

4) there is a hierarchy of the models from the simplest ones to most complicated, which
allows for understanding and interpretation many of the results;

5) the value of simulations is increased where multiple models are available, since they

indicate which changes are more certain than others.

Knutti, R., 2008: Should we believe model predictions of future climate change?doi: 10.1098/rsta.2008.0169
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