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Synoptic-Scale Motions: Quasi-Geostrophic Analysis

 Meridional cross section of longitudinally and time-averaged zonal wind (solid contours,
interval of ms−1 ) and temperature (dashed contours, interval of 5 K) for December–February. 
Easterly winds are shaded and 0˚ C isotherm is darkened. Wind maxima shown in ms−1 , 
temperature minima shown in ˚C. (NCEP/NCAR reanalyses; after Wallace, 2003.)
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Synoptic-Scale Motions: Quasi-Geostrophic Analysis

 Meridional cross section of longitudinally and time-averaged zonal wind (solid contours,
interval of ms−1 ) and temperature (dashed contours, interval of 5 K) for June-August.
 Easterly winds are shaded and 0˚ C isotherm is darkened. Wind maxima shown in ms−1 , 
temperature minima shown in ˚C. (NCEP/NCAR reanalyses; after Wallace, 2003.)
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 Mean zonal wind at the 200-hPa level for December–February averaged for years 1958–
1997. Contour interval 10 ms−1 (heavy contour, 20 ms−1 ). 
(Based on NCEP/NCAR reanalyses; after Wallace, 2003.)

Notice 
significant  
deviations from 
zonal 
symmetry!
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In addition to its longitudinal dependence, the planetary scale flow also varies from day to 
day due to its interactions with transient synoptic-scale disturbances.
In fact, observations show that the transient planetary scale flow amplitude is comparable to 
that of the time-mean. As a result, monthly mean charts tend to smooth out the actual 
structure of the instantaneous jet-stream since the position and intensity of the jet vary. 
Thus, at any time the planetary scale flow in the region of the jet-stream has much greater 
baroclinicity than indicated on time-averaged charts. 
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Latitude–height cross sections through a cold front at 80W 
longitude on 00 UTC January 14, 1999. 
(a) Potential temperature contours (thin solid lines, K) and zonal 
wind isotachs (dashed lines, ms−1). 
(b) Thin solid contours as in (a), heavy contours show Ertel 
potential vorticity labeled in PVU (1PVU = 10−6 K kg−1 m2 s−1 ).

The axis of the jet-stream tends to be located 
above a narrow sloping zone of strong 
potential temperature gradients called the 
polar-frontal zone. The occurrence of an 
intense jet core above this zone of large
magnitude potential temperature gradients is a 
consequence of the thermal wind balance.

The potential temperature contours illustrate 
the fact that isentropes (constant θ surfaces)
cross the tropopause in the vicinity of the jet 
so that air can move between the troposphere 
and the stratosphere without diabatic heating 
or cooling. 
The strong gradient of Ertel potential vorticity 
at the tropopause, however, provides a strong
resistance to cross-tropopause flow along the 
isentropes.
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It is a common observation in fluid dynamics that 
jets in which strong velocity shears occur may be 
unstable with respect to small perturbations. By this 
is meant that any small disturbance introduced into 
the jet will tend to amplify, drawing energy from the 
jet as it grows. Most synoptic-scale systems in 
midlatitudes appear to develop as the result of an 
instability of the jet-stream flow. This instability, 
called baroclinic instability, depends on the 
meridional temperature gradient, particularly at the 
surface. Hence, through the thermal wind 
relationship, baroclinic instability depends on 
vertical shear and tends to occur in the region of the 
polar frontal zone.
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Schematic 500-hPa contours (heavy solid lines), 1000-hPa contours (thin lines), and 1000–
500 hPa thickness (dashed) for a developing baroclinic wave at three stages of 
development. (After Palmer and Newton, 1969.)

In the stage of rapid development of cyclone there is a cooperative interaction between the 
upper level and surface flows; strong cold advection is seen to occur west of the trough
at the surface, with weaker warm advection to the east. 
This pattern of thermal advection is a direct consequence of the fact that the trough at 500 
hPa lags (lies to the west of ) the surface trough so that the mean geostrophic wind in the 
1000- to 500-hPa layer is directed across the 1000- to 500-hPa thickness lines toward
larger thickness west of the surface trough and toward smaller thickness east of
the surface trough. 
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 West–east cross section through a developing baroclinic wave. Solid lines are trough and
ridge axes; dashed lines are axes of temperature extrema; the chain of open circles 
denotes the tropopause.
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Baroclinic disturbances around the world..
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THE QUASI-GEOSTROPHIC APPROXIMATION
Scale Analysis in Isobaric Coordinates

The dynamical equations in isobaric coordinates are presented here. The horizontal momentum 
equation, the hydrostatic equation, the continuity equation, and the thermodynamic energy 
equation may be expressed as:

with the total derivative in the  momentum equation defined by

where ω ≡ Dp/Dt is the pressure change following the motion, S
p
 ≡ −T (∂ ln θ / ∂p) is the static 

stability parameter [S
p
 ≈ 5 × 10−4 K Pa−1 in the midtroposphere], J is heating rate.



12

Let's separate the horizontal velocity into geostrophic and ageostrophic parts by letting
where the geostrophic wind is defined as

and the ageostrophic wind, V
a
 , is just the difference between the total horizontal wind and 

the geostrophic wind. We have here assumed that the meridional length scale, L, is small 
compared to the radius of the earth so that the geostrophic wind may be defined using a 
constant reference latitude value of the Coriolis parameter.
For the systems of interest , more precisely,

The ratio of the magnitudes of the ageostrophic and geostrophic winds is the same order of 
magnitude as the Rossby number.

The momentum can then be approximated to O(Ro) by its geostrophic value, and the rate of 
change of momentum or temperature following the horizontal motion can be approximated 
to the same order by the rate of change following the geostrophic wind. Thus, V can be 
replaced by V

g
 and the vertical advection, which arises only from the ageostrophic flow, can 

be neglected. 

The rate of change of momentum following the total motion is then approximately equal to 
the rate of change of the geostrophic momentum following the geostrophic wind:
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Let's use beta-plane approximation:

For synoptic-scale motions, the ratio of the first two terms in the expansion of f has an order 
of magnitude:

The acceleration following the motion is equal to the difference between the Coriolis force 
and the pressure gradient force. This difference depends on the departure of the actual wind 
from the geostrophic wind. Thus, it is not permissible to simply replace the horizontal velocity 
by its geostrophic value. We write: 

The approximate horizontal momentum equation thus has the form:

In the above each term  is  O(Ro) compared to the pressure gradient force, whereas terms 
neglected are O(Ro2) or smaller.
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The geostrophic wind  is nondivergent:

which gives the continuity equation in the form:

Indicating that ω is determined only by the ageostrophic part of the wind field.

In the thermodynamic energy equation  the horizontal advection can be approximated by its 
geostrophic value. However, the vertical advection is not neglected, but forms part of the 
adiabatic heating and cooling term, despite the smallness of the vertical velocity. 
The adiabatic heating and cooling term can be  simplified by dividing the total temperature 
field, into a basic state (standard atmosphere)  plus a deviation from the basic state:,

Because   only the basic state portion of the temperature field need be 
included in the static stability term, and the quasi-geostrophic thermodynamic energy 
equation may be expressed in the form:
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The alternative form of the thermodynamic energy equation 
can be expressed in terms of the geopotential field:

This is the last equation  from the set of quasi-geostrophic equations, the others (from the 
previous slides) are:

These form a complete set in the dependent variables, Vg , Va , and ω (provided that the 
diabatic heating rate is known). This form of the equations is not, however, suitable as a 
prediction system. It is useful to replace momentum equation  by an equation for the 
evolution of the vorticity of the geostrophic wind, in which case only the divergent part of 
the ageostrophic wind plays a role in the dynamics. 
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 The Quasi-Geostrophic Vorticity Equation

The vertical component of vorticity can  be approximated geostrophically:

The above equation  can be used to determine ζg (x, y) from a known field  Φ(x, y).
Alternatively, it can be solved by inverting the Laplacian operator to determine from a known 
distribution of ζg , provided that suitable conditions on Φ are specified on the boundaries of 
the region in question. 

This invertibility is one reason why vorticity is such a useful forecast diagnostic; if the 
evolution of the vorticity can be predicted, then inversion of the equation yields the evolution 
of the geopotential field, from which it is possible to determine the geostrophic wind and 
temperature distributions. 

Since the Laplacian of a function tends to be a maximum where the function itself is a 
minimum, positive vorticity implies low values of geopotential and vice versa.
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The quasi-geostrophic vorticity equation can be obtained from the x and y components of 
the quasi-geostrophic momentum equation:

Taking spatial derivatives and using the fact that the divergence of the geostrophic wind  
vanishes,  yields the vorticity equation:

which states that the local rate of change of geostrophic vorticity is given by the sum of the 
advection of the absolute vorticity by the geostrophic wind plus the concentration or dilution 
of vorticity by stretching or shrinking of fluid columns (the divergence effect).
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The vorticity tendency due to vorticity advection  may be rewritten as:

The two terms on the right represent the geostrophic advections of relative vorticity and 
planetary vorticity, respectively. For disturbances in the westerlies, these two effects tend 
to have opposite signs, as illustrated schematically:



19

In order to investigate details of vorticity advection consider  geopotential in sinusoidal 
form:

The parameters Φ
0
 , U , and A depend only on pressure, and the wave numbers k and 

l are defined as k = 2π/Lx and l = 2π/Ly with Lx , Ly the wavelengths in the x and y 
directions, respectively. 
The geostrophic wind components are then given by

and  is the geostrophic wind due to the synoptic wave disturbance. Then

It can be shown that in this simple case the advection of relative vorticity by the wave 
component of the geostrophic wind vanishes: 

and the advection of relative vorticity is:
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Consequently the advection of planetary vorticity can be expressed as
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QUASI-GEOSTROPHIC PREDICTION

The evolution of the geostrophic circulation can actually be determined without explicitly 
determining the distribution of ω. Defining the geopotential tendency χ ≡ ∂Φ /∂t, and
recalling that the order of partial differentiation may be reversed, the geostrophic vorticity 
equation can be expressed as

An analogous equation dependent on these two variables can be obtained from the 
thermodynamic energy equation by multiplying through by f

0
 /σ and differentiating with 

respect to p. Using the definition of χ , the result can be expressed as

The left side of  can be interpreted as the local rate of change of a normalized static 
stability anomaly:
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Geopotential Tendency

If for simplicity we set J = 0 and eliminate ω between the equations on the previous slide 
to  obtain an equation that determines the local rate of change of geopotential in terms of 
the three-dimensional distribution of the geopotential field:

This equation is often referred to as the geopotential tendency equation. It provides a 
relationship between the local geopotential tendency (term A) and the distributions of 
vorticity advection (term B) and thickness advection (term C). If the distribution of is known 
at a given time, then terms B and C may be regarded as known forcing functions, and yje 
above  is a linear partial differential equation in the unknown χ.
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 East–west section through a developing synoptic disturbance showing the 
relationship of temperature advection to the upper level height tendencies. A and B 
designate, respectively, regions of cold advection and warm advection in the lower 
troposphere.
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