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The second law of thermodynamics forbids certain processes, even some in which energy
is conserved.
The second law of thermodynamics may be stated in several different ways.
The entropy statement of the second law is: 

There exist an additive function of state known as the equilibrium entropy, which can
never decrease in a thermally isolated system. 

the equality holds if the process is reversible. 

For an adiabatic process the equation reduces to:  𝑑𝑠 ≥ 0 , so the entropy can only
increase. 
Letting the control surface of a hypotetical system pass to infinity eliminates heat transfer 
to the environment and leads to the conclusion that the entropy of the universe can only
increase.

𝑑𝑠 ≥
𝛿𝑞
𝑇
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𝑑𝑠 ≥ !"
#

defines the upper limit of heat that can be absorbed by a system in reversible

process: 𝛿𝑞 ≤ 𝑇𝑑𝑠, 𝑇𝑑𝑠 = 𝛿𝑞$%&.

Through the inequality, the second law asserts whether or not a system is capable of 
evolving along a given path. 

A process for which the change of entropy satisfies the inequality 𝛿𝑞 ≤ 𝑇𝑑𝑠 is possible.

If the relation is satisfied through equality, that process is reversible, whereas if it is satisfied
through inequality that process is irreversible (e.g. a natural process).

A process that satisfies the reverse inequality is impossible: 𝛿𝑞 > 𝑇𝑑𝑠 .

𝑑𝑠 ≥ !"
#

indicates the direction of thermodynamic processes.
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For irreversible processes:

For reversible processes :

The above equalities involve only state variables, therefore they cannot depend on path. 

They must hold whether or not the process is reversible. 

They are known as fundamental relations. 

Substituting the second law into the two forms of the first law: 𝑑𝑠 ≥
𝛿𝑞
𝑇 ⇒ 𝛿𝑞 ≤ 𝑇𝑑𝑠

𝑑𝑢 = 𝛿𝑞 − 𝑝𝑑𝑣
𝑑ℎ = 𝛿𝑞 + 𝑣𝑑𝑝

𝑑𝑢 < 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ < 𝑇𝑑𝑠 + 𝑣𝑑𝑝

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝
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Even though generally valid, the fundamental relations cannot be evaluated easily under
irreversible conditions. 

𝑑𝑢 < 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ < 𝑇𝑑𝑠 + 𝑣𝑑𝑝

Under irreversible conditions, the relationship among these variables reverts to inequalities, 
wherein p and T denote „applied values”, which can be specified. 

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝

The values of p and T refer to the pressure and temperature „of the system”, which can be 
specified only under reversible conditions.
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The inequalities in fundamental realtions account for additional heat rejections to the 
environment that occurs through irreversibility. 

Those inequalities can be eliminated in favor of equalities by introducing the 
noncompensated heat transfer 𝛿𝑞' > 0:

For reversible process:

𝑇$%& and 𝑝$%& refer to applied values under equilibrium conditions (i.e. assumed by the 
system when the process is executed reversibly). 

Noncompensated heat transfer results from the thermal disequilibrium of the system, 
which is represented in the difference 𝑇 − 𝑇$%& and from the mechanical disequilibrium of 
the system, which is represented in the difference 𝑝 − 𝑝$%&.

Substratcting gives:

𝛿𝑞 = 𝛿𝑞$%& − 𝛿𝑞'

𝛿𝑞 = 𝑇𝑑𝑠 − 𝛿𝑞′

𝛿𝑞$%& = 𝑇𝑑𝑠

𝑑𝑢 = 𝑇𝑑𝑠 − 𝛿𝑞′ − 𝑝𝑑𝑣

𝑑𝑢 = 𝑇$%&𝑑𝑠 − 𝑝$%&𝑑𝑣

𝛿𝑞' = 𝑇 − 𝑇$%& 𝑑𝑠 − 𝑝 − 𝑝$%& 𝑑𝑣
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It is convenient to introduce two new state variables:

• The Helmholtz function:

• The Gibbs function: 
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Internal energy:

Enthalpy:

Helmholtz function (Helmholtz energy):

Gibbs function (Gibbs energy):

The Helmholtz and Gibbs function are each referred to as the free energy of the system.

𝑓 = 𝑢 − 𝑇𝑠

𝑑𝑓 = −𝑠𝑑𝑇 − 𝑝𝑑𝑣

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣

𝑔 = ℎ − 𝑇𝑠

𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝

𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣

𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝

𝑑𝑓 = −𝑠𝑑𝑇 − 𝑝𝑑𝑣

𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝



Thermodynamics (2023-2024) – 3

The Maxwell relations

/2611

These relations are known as 
the Maxwell relations

Variables appearing in fundamental relations are not entirely independent. 

Involving only state variables, each fundamental relation has the form of an exact
differential: 𝑀 𝑥, 𝑦 𝑑𝑥 + 𝑁 𝑥, 𝑦 𝑑𝑦 = 𝑑𝑧

The cross derivatives of the coefficients on the right-hand sides must be equal: ()
(*
= (+

(,

𝜕𝑇
𝜕𝑣 -

= −
𝜕𝑝
𝜕𝑠 &

𝜕𝑇
𝜕𝑝 -

=
𝜕𝑣
𝜕𝑠 .

𝜕𝑠
𝜕𝑣 #

=
𝜕𝑝
𝜕𝑇 &

𝜕𝑠
𝜕𝑝 #

= −
𝜕𝑣
𝜕𝑇 .

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑝𝑑𝑣

𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝

𝑑𝑓 = −𝑠𝑑𝑇 − 𝑝𝑑𝑣

𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝
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By defining the direction of thermodynamic processes, the second law implies whether or
not a path out of a given thermodynamic state is possible; it characterizes the stability of 
thermodynamic equilibrium. 

Consider a system in a given thermodynamic state. An arbitrary infinitesimal process
emanating from that state is referred to as a virtual process.

The system is said to be in stable or true equilibrium if no virtual process emanating from 
that state is a natural process, i.e., if all virtual paths out of that state are either reversible
or impossible.

If all virtual paths out of the state are natural processes, the system is said to be in unstable
equilibrium. A small perturbation will then result in a finite change of state.

If some of the virtual processes out of the state are natural, the system is said to be in 
metastable equilibrium. A small perturbation then may or may not result in a finite change
of state, depending on the details of the perturbation. 
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Equality for reversible processes. 

Inequality for irreversible (natural) processes.

Thermodynamic equilibrium.

Inequailty describes impossible processes.

𝑑𝑢 ≤ 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ ≤ 𝑇𝑑𝑠 + 𝑣𝑑𝑝
𝑑𝑓 ≤ −𝑠𝑑𝑇 − 𝑝𝑑𝑣
𝑑𝑔 ≤ −𝑠𝑑𝑇 + 𝑣𝑑𝑝

𝑑𝑢 ≥ 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ ≥ 𝑇𝑑𝑠 + 𝑣𝑑𝑝
𝑑𝑓 ≥ −𝑠𝑑𝑇 − 𝑝𝑑𝑣
𝑑𝑔 ≥ −𝑠𝑑𝑇 + 𝑣𝑑𝑝

𝑑𝑠 ≥
𝛿𝑞
𝑇 ⟶ 𝛿𝑞 ≤ 𝑇𝑑𝑠

𝑑𝑢 = 𝛿𝑞 − 𝑝𝑑𝑣 ⟶ 𝑑𝑢 ≤ 𝑇𝑑𝑠 − 𝑝𝑑𝑣
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For an adiabatic enclosure the second law of thermodynamics 𝑑𝑠 ≥ !"
#

reduces to 𝑑𝑠 ≥ 0
where inequality corresponds to a natural process. 

The criterion of thermodynamic equilibrium is: 𝑑𝑠/0 ≤ 0.

and describes reversible and impossible processes. . 

A state of thermodynamic equilibrium for an
adiabatic system coincides with a local maximum of 
entropy. 

An adiabatic system’s entropy must increase as it
approaches thermodynamic equilibrium. 
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In thermodynamic equilibrium all virtual paths out of the state
are either reversible or impossible.

The state of thermodynamic equilibrium coincides with local minima 
in the properties u, h, f, and g.

Choosing processes for which the right-hand sides of equations vanish yields another 
criteria for thermodynamic equilibrium.

𝑑𝑢 ≥ 𝑇𝑑𝑠 − 𝑝𝑑𝑣
𝑑ℎ ≥ 𝑇𝑑𝑠 + 𝑣𝑑𝑝
𝑑𝑓 ≥ −𝑠𝑑𝑇 − 𝑝𝑑𝑣
𝑑𝑔 ≥ −𝑠𝑑𝑇 + 𝑣𝑑𝑝

𝑑𝑢-,& ≥ 0 𝑑ℎ-,. ≥ 0 𝑑𝑓#,& ≥ 0 𝑔#,. ≥ 0

𝑑𝑢-,& = 0 𝑑2𝑢-,& > 0 𝑑ℎ-,. = 0 𝑑2ℎ-,. > 0

𝑑𝑓#,& = 0 𝑑2𝑓#,& > 0 𝑑𝑔#,. = 0 𝑑2𝑔#,. > 0
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Entropy is a state variable; it can be expressed
by any two intensive parameters, i.e. T and p: 

A change of entropy from the first law: 

Entalpy is also a state
variable; it can be 
expressed by any two
intensive parameters: 

𝑑𝑠 =
𝜕𝑠
𝜕𝑇 .

𝑑𝑇 +
𝜕𝑠
𝜕𝑝 #

𝑑𝑝

𝑑ℎ = 𝑇𝑑𝑠 + 𝑣𝑑𝑝 ⟶ 𝑑𝑠 =
1
𝑇 𝑑ℎ −

𝑣
𝑇 𝑑𝑝 ⟶ 𝑑𝑠 =

1
𝑇
𝜕ℎ
𝜕𝑇 .

𝑑𝑇 +
1
𝑇

𝜕ℎ
𝜕𝑝 #

− 𝑣 𝑑𝑝

𝑑ℎ =
𝜕ℎ
𝜕𝑇 .

𝑑𝑇 +
𝜕ℎ
𝜕𝑝 #

𝑑𝑝

For 𝑝 = 𝑐𝑜𝑛𝑠𝑡 the terms multiplying dT must be equal:
𝜕𝑠
𝜕𝑇 .

=
1
𝑇
𝜕ℎ
𝜕𝑇 .

=
𝑐.
𝑇

From a Maxwell relation:
𝜕𝑠
𝜕𝑝 #

= 𝑣𝛼.
𝜕𝑠
𝜕𝑝 #

=
𝜕𝑣
𝜕𝑇 .

isobaric coefficient of thermal expansion𝛼. =
1
𝑣
𝜕𝑣
𝜕𝑇 .

𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝
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All parameters on the right-hand side are measurable

The change of entropy can be presented as a function of temperature, T, and specific
volume,v. 

The derivation of that relation is simillar as presented before, but with the use of the first
law in form of internal energy. 

isochoric coefficient of thermal expansion

isobaric coefficient of thermal expansion𝑑𝑠 = 𝑐.𝑑ln𝑇 − 𝑣𝛼.𝑑𝑝 𝛼. =
1
𝑣
𝜕𝑣
𝜕𝑇 .

𝑑𝑠 = 𝑐&𝑑ln𝑇 + 𝑝𝛼&𝑑𝑣 𝛼& =
1
𝑝
𝜕𝑝
𝜕𝑇 &
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For the ideal gas the formulation of entropy takes simpler forms:

𝑝𝑣 = 𝑅𝑇

𝛼. =
1
𝑣
𝜕𝑣
𝜕𝑇 .

=
1
𝑣
𝑅
𝑝 =

1
𝑇 𝛼& =

1
𝑝
𝜕𝑝
𝜕𝑇 &

=
1
𝑝
𝑅
𝑣 =

1
𝑇

𝑑𝑠 = 𝑐.𝑑ln𝑇 − 𝑣𝛼.𝑑𝑝

𝑑𝑠 = 𝑐.𝑑ln𝑇 − 𝑅𝑑ln𝑝

𝑑𝑠 = 𝑐&𝑑ln𝑇 + 𝑝𝛼&𝑑𝑣

𝑑𝑠 = 𝑐&𝑑ln𝑇 + 𝑅𝑑ln𝑣 

𝜃 = 𝑇
𝑝3
𝑝

45 6!
⟶ 𝑑ln𝜃 = 𝑑ln𝑇 −

𝑅
𝑐.
𝑑ln𝑝

𝑑𝑠 = 𝑐.𝑑ln𝜃
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If a process is adiabatic, d𝜃=0, and ds≥0. The entropy remains constant or it can increase
through irreversible work (e.g., that associated with frictional dissipation of kinetic energy).

In the case of air parcel, the conditions for adiabatic behaviour are closely related to those
for reversibility.

Adiabatic behaviour requires not only no heat to be transferred across the control surface, 
but also that no heat is exchanged between one part of the system and another.

The latter excludes turbulent mixing, which is the principal form of mechanical
irreversibility in the atmosphere.

It also excludes irreversible expansion work because such work introduces internal motions
that eventually results in mixing. 
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The conditions for adiabatic behavior are equivalent to conditions for isentropic behavior
® potential temperature surfaces, 𝜃=const, coincide with isentropic surfaces, s=const.

An air parcel coincident initially with a certain isentropic surface remains on that surface. 

Because those surfaces tend to be quasi-horizontal, adiabatic behavior implies no vertical
motion.

An air parcels can ascend and descend along isentropic surfaces, but they undergo no 
systematic vertical motion. 
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Under diabatic conditions, an air parcel moves across isentropic
surfaces according to the heat exchanged with its environment. 

Consider an air parcel advected horizontally through different thermal
environments (e.g. north-south direction). 

The figure shows a wavy trajectory
followed by an air parcel that is
initially at latitude 𝜙0. 

The radiative-equilibrium temperature
TRE(F) reflects the equilibrium
between emission of radiant energy
and absorption. 

That thermal structure is achieved if
the motion is everywhere parallel to 
latitude circles, because air parcels
then have infinite time to ajust to local
thermal equilibrium. 

𝑑ln𝜃 =
𝛿𝑞
𝑐.𝑇
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Height (contours) and horizontal
velocity (vectors) on the 500-mb 
isobaric surface for March 4, 1984. 
(Salby)
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Supose the displaced motion is sufficiently slow for the parcel to equilibrate with its
surrounding at each point along the trajectory. 

The parcel’s temperature then differs from TRE only infinitesimally, so the parcel remains in 
thermal equilibrium and heat transfer along the trajectory occurs reversibly. 

Between two successive crossings of the latitude 𝜙0, the parcel absorbs heat such that

If the heat exchange depends only on the parcel’s
temperature, for example

because

Thus,  q1=q2 i and the parcel is restored to its initial
thermodynamic state when it returns to latitude F0.

1 2
3

J
7

2

𝑐.𝑑ln𝜃 = J
7

2
𝛿𝑞
𝑇

𝛿𝑞 = 𝑇𝑑𝑓(𝑇)

𝑐.ln
𝜃2
𝜃7

= ∆𝑓 = 0 𝑇7 = 𝑇2 = 𝑇58 Φ9
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While moving poleward, the parcel is infinitesimally warmer than the local radiative-
equilibrium temperature, so its emits more radiant energy than it absorbs. 

Rejection of heat results in the parcel drifting off its initial isentropic surface toward lower 𝜃, 
which corresponds to lower altitude. 

While moving equatorward, the parcel is
infinitesimally colder than the local radiative-
equilibrium temperature, so it absorbs more radiant 
energy than it emits. 

Absorbtion of heat then results in the parcel 
ascending to higher 𝜃, just enough to restore the 
parcel to its initial isentropic surface when it returns
to the latitude 𝜙0.

Successive crossings of the latitude 𝜙0 result in no 
vertical motion and the parcel’s evolution is perfectly
cyclic. 

1 2 3
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Suppose the motion is sufficiently fast to carry the parcel between radiative environments
before it has equilibrated to the local radiative-equilibrium temperature. 

During the excursion poleward of 𝜙0, the parcel is out of the thermal equilibrium, so heat
transfer along the trajectory occurs irreversibly. Because its temperature lags that of its
surroundings, the parcl returns to the latitude 𝜙0 with a temperature different from that
initially: T1¹T2.

The parcel’s potential temperature also differs from 
that initially. 

The parcel is not restored to its initial isentropic
surface, but rather remains displaced vertically after
returning to the latitude 𝜙0 .

Whether the parcel returns above or below the initial
isentropic surface depends on the radiative-
equilibrium temperature and on details of the motion, 
which control the history of heating and cooling. 

1 2
3

J
7

2

𝑐.𝑑ln𝜃 = J
7

2
𝛿𝑞
𝑇

𝛿𝑞 = 𝑇𝑑𝑓(𝑇)

𝑐.ln
𝜃2
𝜃7

= ∆𝑓 ≠ 0

1

2

3

TRE


