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The presentation plan

ook owbdhe

What is the Eddy Diffusivity/Mass Flux model?

How was the radiation transfer model parameterized?
How were these two models joined together?

A quick look at the results

Summary



Motivation

e Cities of Poland often experience a carbon-based
pollution, concentrated mainly in the PBL

e The PBL diurnal cycles and its evolution affects the
aerosol spatial distribution and therefore influences the
radiation transfer

e Our group collected a lot of data concerning the

radiation fluxes and aerosol concentration in the PBL

Idea: Let’s try to join a model describing the PBL

evolution and the radiative transfer model

fig. 9 - The panorama of Krakow, Poland on 29th Nov 2019. Taken
from the deck of an observation balloon located near the Wawel
Castle



1. Eddy Diffusivity/Mass Flux model



What is the EDMF
model?

e Eddy Diffusivity: addressing
downward fluxes

e Mass Flux: addressing the
limitations of the ED.
Introducing a strong thermal
updraft motion

fig. 1 - The simplistic drawing depicting the EDMF
framework!"



Equations in the EDMF Model

The prognostic equation for a scalar field g%
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The additional prognostic equation for TKE closure!?):
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+ additional equations for K,M, D, F, ¢ etc.



Short description of the implementation

e Written fullyin MATLAB

e The model operates in one dimension

e The spatial range: [0; 4] km, the spatial resolution: 20m
e Thetemporal resolution: 1 min

e Modelling the dry conditions

and other, less relevant settings...



2. Fu-Liou Model



d-four-stream model with Fu-Liou parametrization

e The O-four-stream approach is a natural extension of the popular two-stream
radiative transfer model commonly used in atmospheric sciences

e The parameterization proposed by Fu, Liou and Ackermann!® proves to be relatively
accurate and not much more complex

e Thelegacy code in fortran works relatively fast

e Thefortransolver was embedded in the MATLAB shell to make it more user friendly



What parameters were used?

e Spectral resolution: 6 short wave and 12 long wave bands

e Spatial resolution: 78 levels from O to 100 km above the ground

e Near the ground (>600 hPa) the grid is denser. In the range [0; 4] km the spatial resolution
is 80m

e The clear-sky case (with the aerosol present)

e The sun position was calculated for a user defined DOY and location

and other, less relevant settings...
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3. EMDF/RT Coupling



How were these two models combined?

Atmosphere input

TIME LOOP

FU-LIOU: MATLAB Shell

Atmosphere, Aerosol
profiles

Y

Aerosol input
Time, Day, Month

Coordinates

Radiation
profiles
+ Surface

Atmosphere, Aerosol
profiles

Radiation
profiles

Atmosphere output

Aerosol output

fig. 2 - The block diagram showing how two models were joined together in one time loop and how they

exchange data
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fig. 3a - The evolution of the PBL temperature with time
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fig. 3b - The evolution of the PBL Heating rate with time
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Additional remark: The extinction suppression
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fig. 4 - Examples of extinction profiles. Dashed lines denote
profiles at the end of the simulation. ‘x’ denotes the PBL top

The extinction profile was calculated as follows:

Iz 2 5"

I 2 = 2.

He.0

pe(2) = _z
Lle.0 f:f(z i

with the normalization condition:
o0

te(2)dz

Ta =
0

or after the integration:

g = /Le,O(Z* + H)
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4. Results



The PBL Height vs Aerosol optical depth
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fig. 5a- The PBLH vs AOD.
The extinction suppression: 0.2 km
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fig. 5b - The PBLH vs AOD.
The extinction suppression: 1 km
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The PBL mean temperature difference vs Aerosol optical depth
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fig. 6a - The PBL mean temp. difference vs AOD.
The extinction suppression: 0.2 km
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fig. 6b - The PBL mean temp. difference vs AOD.
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The PBL Height vs Aerosol single scattering albedo
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fig. 7a- The PBLH vs SSA.
The extinction suppression: 0.2 km
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fig. 7b - The PBLH vs SSA.
The extinction suppression: 1 km
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The PBL mean temperature difference vs Aerosol single scattering albedo
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fig. 8a- The PBL mean temp. difference vs SSA.
The extinction suppression: 0.2 km
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fig. 8b - The PBL mean temp. difference vs SSA.
The extinction suppression: 1 km
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4. Summary



Summary

The coupled model is relatively fast: 6 h of simulation with 1 min time step took about
2 min to run on a standard personal PC
Output suggests:

o  Non-absorbing aerosol and low amounts of aerosol have a small impact on the PBLH and the
temperature difference
o  The more absorbing the aerosol, the higher the temperature of the PBL
o  The more polluted the PBL the higher its temperature
The extinction profile suppression effect:
o  Low suppression — Aerosol above the PBL — Smaller PBLH, Lower Temperature
o  Highsuppression — AerosolonlyinPBL — Higher PBLH, Higher Temperature
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