# Stochastic coalescence in Lagrangian cloud microphysics<sup>[1]</sup>

Piotr Dziekan and Hanna Pawlowska

Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland <sup>[1]</sup> P. Dziekan and H. Pawlowska *Atmospheric Chemistry and Physics* 2017, vol. 17.22, pp. 13509-13520

## **Description of coalescence**

Levels of description of collision-coalescence of droplets, listed in the order of decreasing precision:

- Microscopic deterministic tracking of droplet positions (DNS).
- Mesoscopic stochastic Markovian process assuming well-mixed volume (master equation, Gillespie algorithm).
- Macroscopic deterministic equation for the mean value of the stochastic mesoscopic process; requires additional assumptions (Smoluchowski equation, also known as stochastic coalescence equation, SCE).
- Bulk parametrizations.

# Where does the Super-Droplet Method (SDM) fit in?

Super-Droplet Method<sup>[2]</sup> is one of Lagrangian, particle-based methods developed in the last decade to study cloud microphysics. The idea is to model physical processes on a relatively small number of computational droplets, each representing a large number of real droplets.

## **SDM** - standard deviation of autoconversion time

Scaling of fluctuations in autoconversion time with coalescence cell size is studied using ensembles of "one-to-one" and SDM simulations.



The collision-coalescence procedure used in SDM is based on the following simplifications:

- Coalescence volume is well-mixed.
- Linear sampling of collision pairs.
- Each computational droplet represents many real droplets decreased statistical sample.
- Computational droplets collide in an all-or-nothing manner.

<sup>[2]</sup> S. Shima Q. J. R. Meteorological Society 2009, vol. 135(642), pp. 1307-1320

# "One-to-one" simulations

To test precision of SDM, we start with simulations in which one computational droplet represents only one real droplet, what we call "one-to-one" simulation. By comparing "one-to-one" simulations with the master equation we show, that they are at the same level of precision:



Figure 4: Relative standard deviation of the autoconversion time vs coalescence cell size.  $N_{SD}$  is the number of computational droplets (also called super-droplets) and "constant SD" denotes regular SDM. NLS stands for "no linear sampling". Dashed line with  $\alpha = 6$  was fitted to "one-to-one" results. DNS results taken from Onishi et al.<sup>[4]</sup>.

- ► DNS and "one-to-one" modeling show that relative standard deviation of autoconversion time scales with cell size as:  $6/\sqrt{N_0}$ .
- Using few computational droplets in SDM imposes a lower limit on the relative standard deviation.
- SDM gives correct standard deviation if  $N_{SD} > N_0/9$ , otherwise it gives too high standard deviation.

# SCE validity

Stochastic coalescence equation (or Smoluchowski equation) gives time evolution of the mean concentration of droplets. It is derived assuming that the coalescence cell is large. Using "one-to-one" simulations we quantify exactly how large the cell needs to be.

#### 1 – "one-to-one", $N_0 = 10^3$ – –

lution of the master equation is taken from Alfonso and Raga 2017<sup>[3]</sup>

<sup>[3]</sup> L. Alfonso and G. B. Raga Atmospheric Chemistry and Physics 2017, vol. 17(11), pp. 6895-6905

## **SDM** - mean autoconversion time

"One-to-one" simulations are used to test if SDM gives correct mean results. Results depend on size of the coalescence cell parametrized by  $N_0$  - initial number of droplets in the cell.



![](_page_0_Figure_35.jpeg)

Figure 5: Time evolution of the ratio of rain water content to the total water content, Θ. Results of "one-to-one" simulations with different cell sizes and of the Smoluchowski equation are shown. Shaded region is the a standard deviation interval.

- ► As size of a coalescence cell increases, results of "one-to-one" simulations converge towards SCE results. Good agreement for  $N_0 \ge 10^7$ .
- In smaller cells, rain appears later, but grows quicker and eventually higher rain content is observed.
- ▶ In larger cells, concentration of rain drops is lower due to increased number of collisions

Figure 3: Mean autoconversion time  $t_{10\%}$  (time it takes for 10% of cloud water to turn into rain water) from an ensemble of SDM simulations for different cell sizes.  $N_{CD}$  is the number of computational droplets. Rightmost point in each series comes from "one-to-one" simulations, in which  $N_{CD} = N_0$ . For reference, results of the Smoluchowski equation and of DNS<sup>[4]</sup> are shown.

- In "one-to-one" simulations, mean autoconversion time asymptotically decreases with increasing coalescence cell size.
- SCE predicts t<sub>10%</sub> to be shorter than the asymptotic limit of the "one-to-one" simulations, probably due to numerical diffusion.
- Using few computational droplets in SDM causes delay in autoconversion: 10% (1%) delay for 100 (1000) computational droplets.
- > DNS gives slower autoconversion. Probably the coalescence kernel is not right, but it could also mean that the correct size of coalescence cell is  $N_0 = 500$ .

<sup>[4]</sup> R. Onishi et al. *Journal of the Atmospheric Sciences* 2015, vol. 72(7), pp. 1005-1032

### between rain drops.

## Conclusions

- Coalescene cell size has strong impact on rain formation, at least when there is no mixing between cells.
- Smoluchowski equation valid in cells with  $V \ge 0.1$  m<sup>3</sup>. Is such cell well-mixed?
- ► Using SDM, it is easy to obtain correct mean autoconversion time.
- ► Using SDM, it is difficult to obtain correct standard deviation of autoconversion time.

work financed by NATIONAL SCIENCE CENTRE

"One-to-one" Lagrangian modeling is equivalent to the master equation approach.

www.igf.fuw.edu.pl

# pdziekan@fuw.edu.pl