Workshop on Eulerian vs. Lagrangian methods for cloud microphysics

The meeting is organised jointly by:

- Division of Computational Mathematics, Faculty of Math. and CS, Jagiellonian University &
- Institute of Geophysics, Faculty of Physics, University of Warsaw.

The workshop will take place **in Cracow, Poland on April 15-17, 2019** (week after EGU GA in Vienna) in the ``Auditorium Maximum" of the Jagiellonian University.

wojciechkrynski.eu

LECTURES, TALKS AND POSTERS

- Introductory lectures:
 - Anna Jaruga (caltech.edu)
 - Zachary Lebo (uwyo.edu)
 - Athanasios Nenes (epfl.ch)
- List of contributed talks:
 - Gustavo Abade (uw.edu.pl)

Study of droplet-size distribution in turbulent clouds using stochastic microphysics at unresolved scales

- Qian Chen (nuis.edu.cn)
 - Aerosol Impacts on Mesoscale Convective Systems Forming under Different Vertical Wind Shear Conditions
- **Guy Dagan** (ox.ac.uk)
 - Identifying the spatial scales in aerosol-precipitation interactions from a water and energy budget perspective
- Piotr Dziekan (uw.edu.pl)
 - UWLCM: a LES Model with Lagrangian Microphysics; turbulent advection, condensation and coalescence
- Wojciech Grabowski (ncar.ucar.edu)
 - Separating physical impacts from natural variability using piggybacking (master-slave) technique

• Adrian Hill (metoffice.gov.uk)

The GASS Microphysics Intercomparison Project: How Different Are Aerosol-Cloud-Precipitation Interactions from a Variety of Microphysics Schemes?

• Alexander Khain (huji.ac.il)

Computationally efficient linear semi-Lagrangian scheme for advection of microphysical variables in cloud-resolving models

• **Hugh Morrison** (ncar.ucar.edu)

Spurious broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain

• Ann Kristin Naumann (mpimet.mpg.de)

A glimpse of microphysics in next generation climate models

• **Yign Noh** (vonsei.ac.kr)

A Cloud Microphysics Parameterization for Shallow Cumulus Clouds Based on Lagrangian Cloud Model Simulations

• Bogdan Rosa (imgw.pl)

Numerical investigation of collision statistics of cloud droplets with the focus on two-way coupling effects

• Noemi Sarkadi (pte.hu)

Simulation of convective development with bin scheme: LBA case study to investigate the interaction between dynamics and microphysics

• **Bernhard Schulz** (mpimet.mpg.de)

Competing Effects of Droplet Sedimentation and Wind Shear on Entrainment in Stratocumulus

• **Axel Seifert** (dwd.de)

A similarity model of partially rimed snowflakes and its application in Lagrangian super-particle simulations

Raymond Shaw (mtu.edu)

Large eddy Simulation of Turbulent Convection and Cloud Microphysics in the Pi Chamber

• Shin-ichiro Shima (u-hyogo.ac.jp)

Performance comparison among three Monte Carlo schemes for collision-coalescence: O'Rourke method, No-Time Counter method, and Super-Droplet method

• Christoph Siewert (dwd.de)

The particle-based mixed-phase cloud microphysics model McSnow

• Emma Simpson (manchester.ac.uk)

Modelling co-condensation of semi-volatile organic compounds using an open access cloud parcel model

• Juha Tonttila (fmi.fi)

Design and applications of the detailed sectional aerosol-cloud model SALSA in a cloud-resolving setup

• Simon Unterstrasser (dlr.de)

Particle-based coalescence/aggregation in a column model: Rigorous evaluation and comparison with bin model solutions

• List of posters:

• Sylwester Arabas (uj.edu.pl)

particle-based-cloud-modelling.network

• Piotr Bartman (uj.edu.pl)

Super droplets in OpenFOAM

• **Jan Bohrer** (tropos.de)

Implementation of Discrete Particle Methods in a scalable Atmospheric Fluid Dynamics solver

• Tom Dror (weizman.ac.il)

Ultra-giant CCN's effect on warm clouds

• Eshkol Eytan (weizmann.ac.il)

Cloud's mixing: a continuous description from the core to the non-disturbed environment

• Shuxian Fan (nuis.edu.cn)

Effects of aerosol radiative feedback during a severe smog process based on WRF-Chem simulation

• Markus Karrer (uni-koeln.de)

Constraining fall speed of unrimed particles by cloud radar observations and novel modelling techniques

• **Tim Luettmer** (uni-mainz.de)

Ice formation pathways in Warm Conveyor Belts

• **Hyunho Lee** (giss.nasa.gov)

Evaluation of water vapor diffusion equation solving schemes for use in forward simulation of cloud Doppler radar spectra of drizzling stratocumulus

• **Jules Lee** (tropos.de)

How do the vertical distributions of the aerosol sizes and concentrations affect the cloud life-cycle?

• **Keigo Matsuda** (jamstec.go.jp)

Enhancement of radar reflectivity factor due to turbulent droplet clustering in cumulus clouds

• Xiang-Yu Li (uio.no)

Condensational and collisional growth of cloud droplets in a turbulent environment

• Michael Olesik (uj.edu.pl)

Super droplets and Ostwald ripening

• Johannes Schwenkel (uni-hannover.de)

Demystifying fog microphysics: A high-resolution Large-Eddy Simulation study with coupled particle based microphysics

• Lulin Xue (ncar.ucar.edu)

Aerosol processing simulations by the Eulerian and Lagrangian microphysics frameworks

FUNDING

The workshop is organised in connection with the ``Cloud and atmospheric particulate matter microphysics: novel mathematical modelling approaches" project (2018-2020) supported by the <u>Foundation for Polish Science</u> and hosted at the Jagiellonian University in Cracow.