Stochastic coalescence in Lagrangian cloud microphysics

Piotr Dziekan, Hanna Pawłowska

Faculty of Physics, University of Warsaw

Outline

- 1. Modelling coalescence
- 2. Super-droplet method
- 3. Validity of the Smoluchowski equation
- 4. Validity of the super-droplet method
- 5. Conclusions

x(t)

http://www.atmo.arizona.edu/students/courselinks/fall16/atmo170a1s3/lecture_notes/oct27.html

 $C(m_i, m_j, t)dt - probability of collision$

 $C(m_i, m_j, t)dt - probability of collision$ $\frac{N_i}{N_i}, P(N_i, t)$ $\partial P(N_i, t)/\partial t - hierarchy of equations$

 $\partial P(N_i, t)/\partial t$ – hierarchy of equations

Stochastic Simulation Algorithm:

- 1) draw time to the next coalescence event
- 2) select a single pair to coalesce
- 3) update state vector

Gives a single history, large ensemble needed

$\partial P(N_i, t)/\partial t$ – hierarchy of equations

Stochastic Simulation Algorithm:

- 1) draw time to the next coalescence event
- 2) select a single pair to coalesce
- 3) update state vector

Gives a single history, large ensemble needed

derive Smoluchowski equation (SCE):1) neglect correlations:

 $\mathsf{P}(\mathsf{N}_{i} | \mathsf{N}_{i}, t) = \mathsf{P}(\mathsf{N}_{i}, t)$

calculate time evolution of the expected value of N_i.

Assumption 1) is valid as $V \rightarrow \infty$, but the cell has to be well-mixed!

$\partial P(N_i, t)/\partial t$ – hierarchy of equations

Stochastic Simulation Algorithm:

- 1) draw time to the next coalescence event
- 2) select a single pair to coalesce
- 3) update state vector

Gives a single history, large ensemble needed

derive Smoluchowski equation (SCE):1) neglect correlations:

 $\mathsf{P}(\mathsf{N}_{i} | \mathsf{N}_{i}, t) = \mathsf{P}(\mathsf{N}_{i}, t)$

calculate time evolution of the expected value of N_i.

Assumption 1) is valid as $V \rightarrow \infty$, but the cell has to be well-mixed!

alternative: master equation $\partial P(N_1, N_2, ..., N_{bin}, t) / \partial t$ can be solved only for very simple cases

Coalescence in the super-droplet method

Monte Carlo algorithm for collisions:

- regular "const SD" SDM:
- well-mixed cell
- small number of computational droplets ->
 - unrealistic correlations
 - amplified fluctuations
- linear sampling: $N_{sp}/2$ instead of $N_{sp}(N_{sp}-1)/2$ collision pairs

Coalescence in the super-droplet method

Monte Carlo algorithm for collisions:

- regular "const SD" SDM:
- well-mixed cell
- small number of computational droplets ->
 - unrealistic correlations
 - amplified fluctuations
- linear sampling: $N_{sp}/2$ instead of $N_{sp}(N_{sp}-1)/2$ collision pairs
- "one-to-one" SDM:
- well-mixed cell
- each computational droplet represents one real droplet
- linear sampling: $N_{sD}/2$ instead of $N_{sD}(N_{sD}-1)/2$ collision pairs
- should be similar to the SSA, but faster

"one-to-one" vs master equation: average spectrum

"one-to-one" vs master/SSA: summary

- "One-to-one" SDM at the level of precision of master equation/SSA
- Linear sampling does not affect observed averages and standard deviations, but makes "one-to-one" faster than the SSA

Validity of the Smoluchowski equation

- well-mixed cell
- neglect statistical correlations in the number of droplets of different sizes
- no information about fluctuations
- exact as $V \to \infty$
- what is the smallest cell in which Smoluchowski equation can be used without major errors?
- test against "one-to-one" SDM for two cases: fast and slow coalescence

 N_0 - initial number of droplets in a colaescence cell

 N_0 - initial number of droplets in a colaescence cell

 N_0 - initial number of droplets in a colaescence cell

 N_0 - initial number of droplets in a colaescence cell

 N_0 - initial number of droplets in a colaescence cell

In large cells, rain drop concentration decreases sooner

In large cells, rain drop concentration decreases sooner

Large rain drops less efficient at scavenging cloud drops: $V_L = 2V_S$, $r_L^2 = 2^{2/3}r_S^2$

27/10/2017

29

water sphere velocities at 0.6 and 1.2 kg m^{-3} (Battan, 1964)

EQUIVALENT SPHERICAL DIAMETER, mm Beard 1976

0

2

More rain-rain collisions in large well-mixed cells

- broader spectrum of rain drops
- artificial increase in the rate of collisions between rain drops?:

Validity of the Smoluchowski equation: summary

- Smoluchowski equation overestimates amount of rain in small cells probably irrelevant due to mixing by sedimentation
- Smoluchowski equation underestimates amount of rain for cells of intermediate sizes if coalescence is slow - may be irrelevant because of condensational growth

Validity of the super-droplet method

- well-mixed
- small number of computational droplets:
 - unrealistic correlations
 - amplified fluctuations
- check how many computational droplets are needed to obtain correct averages and correct standard deviations

 $m_{rain}(t_{10\%}) = 0.1 m_{tot}$

 $N_{CD} = N_{SD}$

 $m_{rain}(t_{10\%}) = 0.1 m_{tot}$

 $N_{CD} = N_{SD}$

 $m_{rain}(t_{10\%}) = 0.1 m_{tot}$

 $N_{CD} = N_{SD}$

 $m_{rain}(t_{10\%}) = 0.1 m_{tot}$

 $m_{rain}(t_{10\%}) = 0.1 m_{tot}$

 $N_{CD} = N_{SD}$

small N_{sp} - large fluctuations due to a small number of trials

 $N_{SD} \ge N_0 / 9$

Validity of SDM: summary

- 1000 super-droplets per cell are needed to get the correct mean autoconversion time
- N_0 / 9 super-droplets per cell are needed to get the correct standard deviation of autoconversion time

Conclusions

- Smoluchowski equation overestimates amount of rain in small cells probably not a problem because of mixing by sedimentation
- Using a large well-mixed cell (e.g. Smoluchowski equation, SDM) may underestimate amount of rain if coalescence is slow may not be a problem because of condensational growth
- Super-droplet method: easy to get the right average, very hard to get the right standard deviation
- All methods except DNS assume that the cell is well-mixed we need DNS simulations to check what is the maximum size of a well-mixed cell

- well-mixed: droplets of each size are scattered randomly and uniformly within the cell
- well-mixed with respect to coalescence: droplets are randomly redistributed between coalescence events:

 $\tau_{mix} << \tau_{coal}$, $\tau_{coal} \approx 0.1 \text{ s}$

- well-mixed: droplets of each size are scattered randomly and uniformly within the cell
- well-mixed with respect to coalescence: droplets are randomly redistributed between coalescence events:

 $\tau_{mix} << \tau_{coal}$, $\tau_{coal} \approx 0.1 \text{ s}$

• mixing by turbulence:

 $\tau_{mix}^{t} = (V^{2/3}/\epsilon)^{1/3}$, $\epsilon = 10^{3} \text{ cm}^{2} / \text{ s}^{3}$, $V \approx 10^{-2} \text{ cm}^{3}$

- well-mixed: droplets of each size are scattered randomly and uniformly within the cell
- well-mixed with respect to coalescence: droplets are randomly redistributed between coalescence events:

 $\tau_{mix} << \tau_{coal}$, $\tau_{coal} \approx 0.1 \text{ s}$

• mixing by turbulence:

 $\tau_{mix}^{t} = (V^{2/3}/\epsilon)^{1/3}$, $\epsilon = 10^{3} \text{ cm}^{2} / \text{ s}^{3}$, $V \approx 10^{-2} \text{ cm}^{3}$

• mixing by sedimentation: time scale? works only in vertical

- well-mixed: droplets of each size are scattered randomly and uniformly within the cell
- well-mixed with respect to coalescence: droplets are randomly redistributed between coalescence events:

 $\tau_{mix} << \tau_{coal}$, $\tau_{coal} \approx 0.1 \text{ s}$

• mixing by turbulence:

 $\tau_{mix}^{t} = (V^{2/3}/\epsilon)^{1/3}$, $\epsilon = 10^{3} \text{ cm}^{2} / \text{ s}^{3}$, $V \approx 10^{-2} \text{ cm}^{3}$

- mixing by sedimentation: time scale? works only in vertical
- typical LES cell: 10³ m³ ensemble of well-mixed cells?
- consequences of assuming a large well-mixed cell studied here
- · size of an approximately well-mixed cell future research

lucky droplets

	$\gamma = 10^{-4}$			$\gamma = 10^{-3}$			$\gamma = 10^{-2}$			$\gamma = 10^{-1}$			$\gamma = 1$		
N_0	$\langle t_{40} \rangle_{\gamma}$	$\sigma(t_{40})_{\gamma}$	$\gamma\Omega$												
10^{2}	2052	212	10	2930	356	10	4053	517	10^{2}	6365	1158	10^{3}	14777	6099	10^{3}
10^{3}	1366	120	10^{2}	1762	170	10^{3}	2400	267	10^{4}	3440	505	10^{5}	6500	1700	10^{6}
10^4	1089	173	3	1336	103	10	1717	176	10^{2}	2354	276	10^{3}	3912	764	10^{4}
10^{5}	946	33	2	1090	60	20	1334	85	200	1721	169	2000	2552	415	10^{4}
10^{6}							1038	165	2	1301	176	20	1831	277	10^{2}

