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Spurious Cloud Edge Supersaturations

Introduction

I Spurious cloud edge supersaturations are caused by the inability of Eulerian
models to track the cloud boundary across the numerical grid (Grabowski,
1989, JAS; Stevens et al., 1996, MWR)

I Spurious supersaturations might alter the amount of activated droplets
⇒ impact micro- and macro-scale cloud properties

I Many solutions have been suggested to overcome this problem
(e. g., Grabowski and Smolarkiewicz, 1990, MWR; Margolin et al., 1997,
MWR; Grabowski and Morrison, 2008, MWR)

I Silver bullet (Stevens et al., 1996, MWR): Lagrangian tracking of cloud edge

I Lagrangian cloud models offer free tracking of the cloud edge
⇔ computation of fields of water vapor, temperature, and hence
supersaturation are still based on an Eulerian model

I This talk will give some preliminary insights on the production of spurious
supersaturations in Lagrangian cloud models, and how these errors can be
avoided
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Spurious Cloud Edge Supersaturations

Idealized Study: Set-up
I 1-D advection of a cloud edge across one

grid cell (similar to Stevens et al., 1996,
MWR)

I analytic description of advection of
Eulerian supersaturation field:

Sen(t) = Sen,0 + (Scl − Sen,0)
t

τadv

with Scl = 0 %, Sen,0 = −5 %, advection
time scale τadv = ∆/u

I depletion/production of supersaturation
by condensation/evaporation

I cloud physics calculated by a Lagrangian
Super-droplet approach (called LAG):

I linear interpolation of S on particle
location

I 50 % activated droplets
I different initial droplet radii and

concentrations are tested

I for comparison to Eulerian models
(called QEU):

I like LAG, but:
I no interpolation of S
⇒ imitating grid-averaged

Eulerian fields
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Spurious Cloud Edge Supersaturations

Idealized Study: Follow a Droplet at the Cloud Edge

I supersaturation experienced by a droplet at the cloud edge for different advection
time scales τadv

I due to the interpolation, the sub-saturation is strongly decreased in the LAG runs

I the time-averaged sub-saturation is decreased by a factor of 3:

SQEU = 1/2 Sen vs. SLAG = 1/6 Sen

I this results in a faster evaporation of droplets in the QEU runs

⇒ particles lose their identity much faster
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Spurious Cloud Edge Supersaturations

Idealized Study: Representation of the SGS-Cloud Edge
I due to the Lagrangian approach, the

cloud edge can be represented on the
sub-grid scale (SGS)

I this is tested by locating the rightmost
activated droplet

I for low τadv, the evaporation time
scale,

τevap =
r 2(Fk + FD)

2S
,

is longer than τadv ⇒ droplets at the
cloud edge do not evaporate
completely

I for high τadv, an increasing number of
droplets at the cloud edge evaporates
completely ⇒ the cloud edge is
spuriously shifted backwards

I If the SGS cloud edge is maintained, will the spuriously evaporated water
condense back to the original droplets?
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Spurious Cloud Edge Supersaturations

Idealized Study: Keeping the Identity of a Droplet

I the amount of water vapor
evaporated/condensed by cloud and
non-cloud particles is analyzed

I almost no supersaturations are
produced nor depleted by non-cloud
particles

I the phase relaxation time scale
(τphase = (4πDN〈r〉)−1) of non-cloud
particles is larger than for cloud
particles

I for long advection time-scales,
however, water vapor might condense
on unactivated droplets within the
cloud ⇒ spurious activation of
droplets

I amount of spuriously released water vapor should be minimized by limiting the
amount of water spuriously evaporated during the advection ⇒ τadv < τphase
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Spurious Cloud Edge Supersaturations

Idealized Study: Number of Activated Droplets

I number of activated droplets
at t = τadv as a function of
τadv (similar to Stevens et al.,
1996, MWR)

I the number of activated
droplets is a measure of the
impact of spurious
supersaturations:

I > 50 % ⇒ spurious
activation for τadv > τphase

I < 50 % ⇒ spurious
deactivation for τadv > τevap

I to minimize the impact of spurious cloud edge supersaturations, reduce τadv by
decreasing the grid spacing ⇒ this keeps the identity of a droplet

I contrary to Stevens et al. (1996, MWR), who found no convergence for Eulerian
cloud models
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Spurious Cloud Edge Supersaturations

3D Simulation: Set-up

I more realistic test of the local criterion for minimizing the production of
spurious supersaturations by keeping the identity of a droplet:

τadv < min (τevap, τphase)

I grid spacings: 40 m, 20 m, 10 m, and 5 m ⇒ reducing τadv by a factor of 8

I simulation of a single maritime shallow cumulus cloud

I all simulations are carried out with 125 particles per grid box

I monotone advection of Eulerian scalar fields of potential temperature and
water vapor (⇒ avoid dispersive ripples, but no additional techniques for the
mitigation of spurious supersaturations as discussed by Grabowski and
Smolarkiewicz (1990, MWR))

I details of the Lagrangian cloud model and the used LES are described in
Riechelmann et al. (2012, New J. Phys.) and Maronga et al. (2015, GMDD)
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Spurious Cloud Edge Supersaturations

3D Simulation: Development of the Cloud

I contours of supersaturation S

I areas in which

τadv > min (τevap, τphase)

are marked by dots
⇒ loss of a droplet’s identity

I τevap is determined for the mean
radius

I for large grid spacings, the
identity of a cloud droplet gets
lost in almost every grid box

I for grid spacing less or equal
to 10m, the whole cloud
seems to be well represented
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Spurious Cloud Edge Supersaturations

3D Simulation: Amount of Spurious Grid Cells

I fraction of grid cells in which
τadv > τphase or τadv > τevap at the
cloud edge

I the fraction of grid cells violating the
τphase criterion decreases heavily for
∆ < 20 m

⇒ this is determined by the typical
velocities, droplet radii, and particle
concentration described for this case

I the fraction of grid cells violating the
τevap criterion decreases moderately
and increases for ∆ > 5 m

⇒ the increasingly better resolved
cloud edge makes the representation
by Lagrangian particles more difficult
for very high-resolution simulations
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Spurious Cloud Edge Supersaturations

Conclusions

I as in Eulerian models, spurious cloud edge supersaturations are also present in
Lagrangian cloud models

I in Lagrangian cloud models, spurious evaporation is reduced by a factor of 3
due to the interpolation of Eulerian quantities on a droplet’s position

I by the explicit simulation of droplets by individual particles, the cloud edge
can be represented on the sub-grid scale

I to keep the identity of an individual droplet on the SGS, the droplets
should neither evaporate completely nor produce significant spurious
supersaturations (which transport water to other particles):

τadv < min (τevap, τphase)

I this data is obtained locally, i. e., on the basis of one grid cell, and
depends on the investigated type of the cloud

I next steps: global quantification of spurious supersaturations in Lagrangian
cloud models
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