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LES model with SDM microphysics

EULERIAN
● Eulerian variables: θ, qv, u, v, w

● anelastic approximation:

LAGRANGIAN
● Lagrangian representation of 

humidified aerosols, cloud droplets 
and rain drops

● κ-Köhler parametrisation  of water 
activity

● “all-or-nothing” coalescence 
algorithm (Shima et al. 2009)



  

Numerics

EULERIAN
● advection with the MPDATA 

algorithm (libmpdata++)

● generalized conjugate residual 
pressure solver (libmpdata++)

● trapezoidal integration of buoyancy 
and pressure gradient

● Euler forward integration of other 
forcings

● calculated on CPUs

LAGRANGIAN
● Super-droplet method 

(libcloudph++)

● SD attributes: multiplicity, dry and 
wet radii, hygroscopicity

● integration of growth equation

● predictor-corrector advection of 
SDs

● calculated on GPUs



  

Time step sequence



  

Spatial discretization



  

Condensation sub-stepping

● Scheme for integration of the condensation 
equation converges for Δt ≈ 0.1 s

● LES timestep  Δt ≈ 1 s
● two algorithms tested:

– per-cell
– per-particle
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[n-1] comes from the cell in which the SD was at step n-1



  

Comparison with other models - DYCOMS 
RF02 stratocumulus simulations

➢ A drizzling marine stratocumulus

➢ Test UWLCM against 11 LES models 
from the Ackerman et al. 2009 
intercomparison

➢ Microphysical schemes in other 
models: 
bin, single-moment bulk and double-
moment bulk

➢ implicit LES in UWLCM, other models 
with explicit subgrid-scale schemes

➢ 2D and 3D simulations

source: Angela Rowe
communitycloudatlas.wordpress.com

ANIMATION

file:///home/piotr/praca/wyniki/DYCOMS/a02_SD30_dt1_4_12_17_outfreq30/0_720_smoothto60_4xspeed.mp4


  

2D simulations

● Test the per-cell and per-particle sub-stepping 
algorithms

● Test different time step lengths
● Test different numbers of SDs, 

NSD - initial number of SDs per cell

● Comparison with 3D results from Ackerman et 
al. 2008



  

2D time series



  

2D vertical profiles



  

3D simulations

● Use the per-particle sub-stepping algorithm
● NSD = 40

● Test for different time step lengths
● Comparison with 3D results from Ackerman et 

al. 2008



  

3D time series



  

3D vertical profiles



  

3D: comparison with bin microphysics



  

Stratocumulus modeling - conclusions

● General agreement between UWLCM and reference 
models

● Discrepancies in the third moment of vertical velocity 
(ILES vs SGS ?)

● Little rain in UWLCM
● NSD = 40 same as NSD = 1000

● per-particle sub-stepping necessary for correct 
activation

● 2D simulations convenient for testing and microphysics 
studies



  

Advantages of particle-based microphysics: 
Cumulus simulations

reproduced from Lasher-Trapp et al. Q. J. R. Met. Soc. 2005



  

cloud water mixing ratio [g/kg] t = 120.00min
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UWLCM cumulus results



  



  



  

Summary

● Particle-based Lagrangian microphysics used in LES give 
stratocumulus results in agreement with bulk and bin 
microphysics, except for lower precipitation.

● Implicit LES is in agreement with LES with 
subgrid-scale models, with the exception of skewness of the 
vertical velocity distribution.

● Thanks to the use of GPUs, sophisticated microphysics do not 
slow down simulations.

● LES code available for everyone:
https://github.com/igfuw/UWLCM

● manuscript submitted to GMD



  

                  libmpdata++

– new implementation of MPDATA

– written in C++

– started ca. 5 years ago

                    libcloudph++

– cloud microphysics routines

– written in C++ with python bindings

– started ca. 5 years ago

Software developed by our group

                     UWLCM

– Large Eddy Simulations of clouds
using anelastic approximation

– written in C++

– started ca. 2 years ago



  

Modern code structure: separation of concerns

homogeneous advection

source terms

prognosed velocity

pressure solver

subgrid-scale model

● hierarchy of solvers:

● boundary conditions
● concurrency handlers
● output handlers

libmpdata++



  

Modern code structure: separation of concerns

homogeneous advection

source terms

prognosed velocity

pressure solver

subgrid-scale model

● hierarchy of solvers:

● boundary conditions
● concurrency handlers
● output handlers

single-moment bulk

double-moment bulk

Lagrangian

CPUs GPUs

libmpdata++ libcloudph++

● microphysical schemes:



  

Modern code structure: separation of concerns

homogeneous advection

source terms

prognosed velocity

pressure solver

subgrid-scale model

piggybacking

2D / 3D

forcings (w/o microphysics)

microphysics

● hierarchy of solvers:

● boundary conditions
● concurrency handlers
● output handlers

single-moment bulk

double-moment bulk

Lagrangian

● separation of features:

● plotting software

CPUs GPUs

libmpdata++ libcloudph++UWLCM

● microphysical schemes:



  

Modern code structure: separation of concerns

homogeneous advection

source terms

prognosed velocity

pressure solver

subgrid-scale model

piggybacking

2D / 3D

forcings (w/o microphysics)

microphysics

● hierarchy of solvers:

● boundary conditions
● concurrency handlers
● output handlers

single-moment bulk

double-moment bulk

Lagrangian

● separation of features:

● plotting software

CPUs GPUs

libmpdata++ libcloudph++UWLCM

● microphysical schemes:

➢ version control system
➢ automated tests
➢ open-source code hosted on github

➢ Code sections can be developed independently.
➢ Code are sections ready to be reused.



  

Benefits of the modern code structure: one code, many models

runtime options:

● number of dimensions:
./bicycles --ny=[0, X] 

● type of microphysics:
./bicycles --micro=[blk_1m, lgrngn]

● where to calculate Lagrangian microphysics:
./bicycles --backend=[serial, OpenMP, CUDA, multi_CUDA]

● model setup:
./bicycles --case=[dycoms, bomex, ...]

● piggybacking:
./bicycles --piggy=1 --vel_in=file

● number of CPU threads for dynamics:
OMP_NUM_THREADS=X ./bicycles

● distributed memory runs:
mpiexec -np X ./bicycles

● advection, coalescence, condensation timesteps

● number of super-droplets

● ...

compile time options:

● MPDATA options

– variable-sign option:
opts = [opts::iga, opts::abs]

– non-oscillatory option:
opts = [opts::fct]

– third-order terms:
opts = [opts::tot]

– ...

● microphysics options

– coalescence kernel

– terminal velocity

– ....

● numerical precision
real_t = [float, double]



  

CPU CPU CPU

GPU

memory

GPU

node

CPU CPU CPU

GPU

memory

GPU

node

Eulerian

Lagrangian

● Domain decomposition between nodes
● Separate intra-node domain decomposition for CPU threads and GPUs
● Bulk microphysics computed on CPUs
● Lagrangian microphysics computed on CPUs or GPUs
● Simultaneous computations of fluid flow on CPUs and microphysics on GPUs 

synchronized only during condensation

Modern HPC architecture
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