Giant cloud condensation nuclei and precipitation in marine clouds

Piotr Dziekan, Jorgen Jensen, Wojciech Grabowski, Hanna Pawlowska

Giant cloud condensation nuclei (GCCN)

- Aerosols with large dry radii, typically $r_d > 1 \mu m$
- Droplets formed on GCCN can easily grow to r > 20µm through condensation, hence they can initiate collision-coalescence
- Over oceans, small concentrations of sea-salt GCCN, of the order of 1/cc, are released from breaking waves

LES with GCCN

- Marine stratocumulus (Dycoms RF02)
- Marine cumulus (RICO)
- Various GCCN and CCN concentrations

- University of Warsaw
 Lagrangian Cloud Model (UWLCM)
- Lagrangian microphysics (super-droplet method):
 - solute effect included in growth equation
 - explicitly modeled droplet activation
 - no numerical diffusion in size spectrum
 - CCN and GCCN have different hygroscopicities

Precipitation vs GCCN conc.

Cumulus - why rain is not sensitive to GCCN?

- GCCN affect rain, because they are seeds for large droplets that collide efficiently with smaller droplets
- Maybe in cumuli large droplets are formed even without GCCN?
- We test this by comparing concentrations of droplets with r>25um in Sc and Cu that have similar cloud base precipitation

Sc vs Cu - concentration of large droplets

Comparison with observations

observation	LES without GCCN	LES with GCCN
1 Sc: 0.04 mm/h cloud base precip. N _{GCCN} =1.89/cc	0.004 mm/h	0.03 mm/h
² Sc: from 0.24 mm/d to 0.46 mm/d surface precip. Surface wind speed 9.5m/s	0.01 mm/d	a) 0.22 mm/d $N_{GCCN} = 1.89/cc^{1}$ b) 0.13 mm/d $N_{GCCN} = 0.82/cc^{4}$
³ Cu: no effect of GCCN on precipitation	Very low sensitivity of precipitation to GCCN	

 ¹ Jung et al. Atmos. Chem. Phys. (2015)
 ² Ackerman et al. MWR (2019)
 ³ Reiche & Lasher-Trapp Atmos. Res. (2010), Minor et al. J. Atmos. Sci. (2011)
 ⁴ O'Dowd et al. Atmospheric Environment (1997)

Conclusions

- Wave-released giant sea-salt aerosols:
 - significantly increase precipitation in marine stratocumuli, in particular for moderate CCN concentrations
 - do not have much impact on precipitation in marine cumuli, because marine cumuli produce small concentrations of large droplets even without GCCN
 - production of large droplets in cumuli depends on SGS motion of droplets; Is this a physical or numerical effect? Any benchmark on SGS motion of Lagrangian particles?