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Rain	  forma7on	  

•  Activation of Cloud Condensation 
Nuclei (CCN) 

•  Growth by condensation 

•  Growth by mixing/collision due to 
turbulence 

•  Growth by gravitational collision 



Turbulence	  and	  droplet	  	  
Condensa7on	  DNS:	  a	  Brief	  Excursus	  

 

 
 

●  turbulence	  has	  been	  indicated	  as	  the	  key	  missing	  link	  to	  solve	  condensaNon/
collision	  coalescence	  problem	  

●  first	   DNS	   of	   turbulence/cloud	   interacNons	   done	   by	   Vaillancourt	   et	   al.	   2002.	  
Domain	   10cm,	   resoluNon	   803	   grid	   points,	   droplets	   50000à	   Conclusion:	  
negligible	  effect	  of	  the	  small-‐scale	  turbulence	  on	  droplet	  spectra	  broadening	  

●  Celani	   et	   al.	   2007,	   resolving	   large-‐scale	   fluctuaNons	   2D	   cloudà	   Conclusion:	  
dramaNc	  increase	  in	  the	  width	  of	  the	  droplet	  spectrum	  is	  qualitaNvely	  found	  
although	  the	  dynamics	  of	  the	  small	  scales	  is	  not	  resolved	  

●  Paolo	  &	  Sharif,	  2009,	  same	  conclusions	  but	  3D	  simulaNon	  obtained	  adding	  an	  
arbitrary	  large-‐scale	  forcing	  on	  the	  supersaturaNon	  equaNon	  field.	  

●  Current	  state	  of	  the	  art:	  Lano^e	  et	  al	  2009,	  3D	  DNS	  simulaNons	  increasing	  size	  
of	   the	   cloud	   up	   to	   70	   cmà	   turbulence	   affects	   droplet	   spectra	   broadening	  
mechanism	  by	  increasing	  the	  cloud	  size.	  

 



Spectral	  broadening	  	  
due	  to	  turbulence	  

●  Increase of standard deviation with 

Reynolds number : Importance of large 

scales 

●  Upper limit   

●  Lower limit 

Lanotte, Seminara, Toschi, JAS 2009 

TL < ⌧s

TL > ⌧s

�R2 / A3A1v⌘⌧
2
⌘Re5/2�

�R2 / A3A1v⌘⌧⌘⌧sRe3/2�



Our	  objec7ves	  
 
1)  Has Droplet spectra variance in warm 

cloud been well approximated so far? 

2)  Metodologies: -Direct Numerical 
Simulation DNS 

3)  Current simulation time seconds/2 
minutesà up to 20 minutes 



Turbulence	  and	  condensa7on:	  
mathema7cal	  model	  

Eulerian framework: Navier-Stokes + supersaturation field s 
à s>0 condensation s<0 evaporation 

@tu+ u ·ru = �1

⇢
rp+ ⌫r2u+ f , r · u = 0

@ts+ u ·rs = r2s+A1w � s

⌧s
⌧�1
s =

4⇡⇢wA2A3

V

NX

i=1

Ri

Phase relaxation time scale 

Lagrangian framework: droplet dynamics 
dVi(t)

dt
= �Vi � vi[Xi(t), t]

⌧d
+ gz

dXi(t)

dt
= Vi(t)

dRi(t)

dt
= A3

s[Xi(t), t]

Ri(t)

Droplet modeled as point 
particles 
 
Force acting on droplets: Stokes 
drag and gravity 

 

Possible	  large	  scale	  forcing	  of	  supersaturaNon	  

Same formulation of Lanotte et al., JAS 2009 



Numerical	  Methodology	  
● Combined	  Eulerian/Lagrangian	  Solver	  
● Pseudo-‐spectral	  code	  
● 2/3	  rule	  for	  dealiasing	  
● Tri-‐linear	  interpolaNon	  to	  evaluate	  fluid	  velocity	  
and	  saturaNon	  field	  at	  the	  droplet	  posiNon	  
● Tri-‐linear	   extrapolaNon	   to	   calculate	   droplet	  
feedback	  on	  the	  saturaNon	  field	  
● Full	   MPI	   parallelizaNon	   for	   both	   carrier	   and	  
dispersed	  phase	  
● ComputaNonal	   Nme	   step	   linearly	   scales	   up	   to	  
10000	  cores	  à	  huge	  simulaNons	  

 

 



Simula7ons	  parameters	  

 

 

●  Dissipation rate: 

●  Kolmogorov scale: 
●  Kolmogorov time: 

●  Initial Radius: 13 µm (1) 5 µm (2)                              

●  Phase relaxation time: 2.5 s (1) 7 s (2) 

 
 

" = 10�3 m2s�3

⌘ = 1 mm
⌧⌘ = 0.1 s

DNS E1: state of the art with 10243 grid point resolution  
corresponding to a domain length of 1.5 meters with  
109 droplets evolved. First DNS with cloud size order meter. 
 
E1, C2 and D1 do not reach 20 minutes of simulation 
  

Typical	  value	  found	  in	  
	  	  	  	  	  	  stratocumuli	  

St⌘ = 3.5E � 2÷ 5E � 3

C = 130/cm3

3

�R2 ' Re
3/2
� . From (14) we note that �R2 at a fixed

time depends only on the scale separation represented
by Re� and not on the value of the mean dissipation
inside the clouds. This implies that clouds with di↵er-
ent dissipation rate and same Reynolds number have an
identical behavior in terms of droplet growth by conden-
sation. The droplet/turbulence condensation dynamics
does not depend on the turbulent small scales: the corre-
lation between the supersaturation field and the droplet
surface area, governing the distribution broadening, is
determined by the large flow scales. This result is in
contrast with the belief that the variance of the droplet
distribution should not grow indefinitely as turbulence
tends to decorrelate the particle size from the local sat-
uration field [8].

To test our predictions, we run simulations by gradu-
ally increasing the size of the computational clouds from
few centimeters to 100 m. The governing equations (1-
4) are solved with a classical pseudo-spectral code for
the fluid phase coupled with a Lagrangian algorithm for
the droplets [24]. All cases share the same turbulent ki-
netic energy dissipation " = 10�3m2s�3, a value typi-
cally measured in stratocumuli. This corresponds to the
same small-scale dynamics, with Kolmogorov scale ⌘ =
(⌫3/")1/4 ⇡ 1mm, Kolmogorov time ⌧⌘ = (⌫/")1/2 ⇡ 0.1s
and velocity v⌘ = ⌘/⌧⌘ ⇡ 1 cm/s. We examine droplets
with 2 di↵erent initial radii, 13µm and 5µm, denoted
as case 1 and 2, with supersaturation relaxation time
⌧s = 2.5 and 7s, and same concentration (130 droplets
per cm3). The reference temperature and pressure are
T = 283K and P = 105Pa, with A1 = 5 ⇥ 10�4m�1,
A2 = 350 m3/kg, A3 = 50µm2/s. The simulation param-
eters are reported in table I. Note that simulation DNS
D1 represent the largest Direct Numerical Simulation of
a warm cloud up to now.

The time evolution of �R2 =
p

h(R20)2i is shown in
Figure 1 for all cases investigated. The data confirm the
predictions from (13), i.e. that �R2 / t1/2.

Label N3 L
box

v
rms

T
L

T0 Re
�

N
d

[m] [m/s] [s] [s]
DNS A1/2 643 0.08 0.035 2.3 0.64 45 6⇥ 104

DNS B1/2 1283 0.2 0.05 4 0.95 95 9.8⇥ 105

DNS C1/2 2563 0.4 0.066 6 1.5 150 9⇥ 106

DNS D1 10243 1.5 0.11 14 3 390 4.4⇥ 108

DNS E1 20483 3 0.12 30 4 600 3.⇥ 109

LES E1 5123 100 0.7 142 33 5000 1.3⇥ 1014

TABLE I: Parameters of the simulations. The resolution N ,
the cloud size L

box

, the root mean square of the turbulent
velocity fluctuations v

rms

, and T
L

= L
box

/v
rms

an approxi-
mation of the large turbulent scales. T0 indicates the integral
time T0 = (⇡/2v3

rms

)
R
[E(k)/k]dk with k the wavenumber

and E(k) the turbulent kinetic energy spectra [22]. The total
number of droplets is indicated by N

d
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FIG. 1: Root mean square of the square droplet radius fluc-
tuations �

R

2 versus time from simulations (symbols) and the
prediction of the stochastic model (13) (lines). Inset: correla-

tion hs0R20i from simulations (thin lines) and from Equation
(12) (thick lines).
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FIG. 2: Root main square of the square droplet radius fluc-
tuations �

R

2 versus time for the LES simulations (symbols)

and the model (13) (lines). Inset: correlation hs0R20i from
the LES (thin line) and the model (12) (thick line).

The correlation hs0R20i is displayed in the inset of Fig-
ure 1 (thin solid line): In all cases, hs0R20i do reach a
statistical steady state, fluctuating around the value de-
termining the growth of �R2 . The turbulence creates a
positive correlation between supersaturation and droplet
surface area fluctuations that increases by increasing the
turbulent scale separation, i.e. the cloud size. The agree-
ment between the model and the numerical data is re-
markable for the largest domain sizes where scale separa-
tion is significant and viscous e↵ects can be neglected.
For small Re�, viscous e↵ects are important and the
stochastic inviscid model overestimates the correct be-
havior.

To test the model for a larger cloud size, we perform a



Conserva7ve	  hypothesis	  

● We	  assume	  <s>=0	  à	  all	  is	  due	  to	  s	  fluctuaNons	  
● No	  mean	  updraf	  
● Consequently	  <R2>=R02	  
● Entrainment	  effects	  are	  not	  considered	  (Kumar,	  
Schumacher	  and	  Shaw,	  JAS	  2014)	  
● AdiabaNc	   approximaNonà	   small	   temperature	  
fluctuaNons	   (DNS	  D1	   T_rms=0.005	   K)à	   A1,	   A2,	  A3	  costants	  
● Effects	  due	  to	  inhomogeneity	  are	  not	  captured	  
● Collisions	  not	  included	  
● Our	   results	   represent	   a	   lower	   limit	   on	   droplet	  
growth 

 



DNS	  results	  

●         standard deviation of 
square radius fluctuations 

●  Standard deviation increases 
continuosly even if s has 
reached the quasi steady state 

●  Power law t1/2 

●  Proportional to Reλ and 	

●  Larger scales are responsible 

for variance growth 

●  Correlation            reaches a 
quasi-steady state	


2

divergence-free fluid velocity, p the pressure, ⇢ the air
density, f an external forcing to maintain a statistically
stationary state and ⌫ the kinematic viscosity. These ap-
proximations are valid for clouds smaller than L ⇡ 100 to
safely neglect the spatial inhomogeneity and large scale
variations of the thermodynamic parameters. The su-
persaturation field s is passively transported by the fluid
according to eq. (2), a generalization of the Twomey
model[20]. The di↵usivity of the water vapor in air is
denoted by , w is the velocity component in the gravity
direction, A1w is a source/sink term of supersaturation
resulting from the variation in temperature and pres-
sure with height. The supersaturation relaxation time
⌧s depends on droplet concentration and dimensions [21]
⌧�1
s = 4⇡⇢wA2A3

P
Ri/V where Ri are the radii of the

droplets in the volume V , ⇢w the water density, A1, A2

and A3 constant function of thermodynamic quantities
[19].The droplets are tracked in a Lagrangian framework:
assuming those as rigid spheres smaller than the smaller
flow scale, the Kolmogorov scale, and at low mass frac-
tion to neglect feedback on the flow, the only forces gov-
erning the droplet motion are gravity and the Stokes drag
(nucleation/activation is not considered):

dvd

dt
=

u(xd, t)� vd

⌧d
� gez (3)

dxd

dt
= vd (4)

dR2
i

dt
= 2A3s(xd, t) (5)

with xd and vd the droplet position and velocity, u(xd, t)
the fluid velocity at droplet position, ⌧d = 2⇢wR2

i /(9⇢⌫)
the droplet relaxation time, g the gravitational accelera-
tion and s(xd, t) the supersaturation at the droplet posi-
tion. The governing equations are solved with a classical
pseudo-spectral code for the fluid phase coupled with a
Lagrangian algorithm for the droplets, see [22].

We run a set of simulations by gradually increasing
the size of the computational clouds, from clouds of the
order of few centimeters to 100 meters. All the sim-
ulations share the same turbulent kinetic energy dissi-
pation " = 10�3m2s�3, a value typically measured in
stratocumuli. The di↵erent cases are characterized by
the same small-scale dynamics, with the Kolmogorov
scale ⌘ = (⌫3/")1/4 ⇡ 1mm, the Kolmogorov time
⌧⌘ = (⌫/")1/2 ⇡ 0.1s and velocity v⌘ = ⌘/⌧⌘ ⇡ 1 cm/s.
We examine two droplets populations with same concen-
tration (130 droplets per cubic centimeter) but di↵erent
initial radius and, consequently, supersaturation relax-
ation time ⌧s. These, denoted as case 1 and 2, have initial
radius 13µm and 5µm and ⌧s = 2.5, 7s, corresponding to
an initial Stokes number of St⌘ = ⌧d/⌧⌘ = 3.5e�2, 5e�3.
The reference temperature and pressure are T = 283K
and P = 105Pa and the thermodynamic constants A1 =
5E � 4 m�1, A2 = 350 m3/Kg, A3 = 50µ m2/s.

Label N3 L
box

[m] v
rms

[m/s] T
L

[s] T0[s] Re
�

N
d

DNS A1/2 643 0.08 0.035 2.3 0.64 45 6E4
DNS B1/2 1283 0.2 0.05 4 0.95 95 9.8E5
DNS C1/2 2563 0.4 0.066 6 1.5 150 9E6
DNS D1 10243 1.5 0.11 14 3 390 4.4E8
LES E1 5123 100 0.7 142 33 5000 1.3E14

TABLE I: Parameters of the simulations. The resolution N ,
the cloud size L

box

, the root mean square of the turbulent
velocity fluctuations v

rms

, and T
L

= L
box

/v
rms

an approx-
imation of the large turbulent scales. T0 indicates the inte-
gral time T0 = (⇡/2v3

rms

)
R
E(k)/kdk with k the wavenumber

and E(k) the turbulent kinetic energy spectra [23]. The total
number of droplets is indicated by N

d

.

The mean supersaturation is set to zero so that the
mean droplet radius does not change; we therefore ana-
lyze the most conservative case where the droplet spectral
broadening is only induced by supersaturation fluctua-
tions and not by a mean updraft. The simulation param-
eters are reported in table I. The Taylor Reynolds number
Re� = vrms�/⌫ accounts for the large/small scale sepa-
ration with � a typical scale of the intermediate eddies,
so-called Taylor microscale [23]. Note that simulation
DNS D1 represent the largest Direct Numerical Simula-
tion of a warm cloud up to now.
The broadening of the droplet size distribution is quan-

tified by the root mean square of the square droplet ra-
dius fluctuations, �R2 =

p
h(R20)2i, where h·i indicates

the droplet and 0 the fluctuation with respect to the mean
value hR2i = 0, because hsi = 0. The behavior of �R2

is shown in figure 1 in a log-log plot for all the simula-
tions (symbols). The most important observation is that

t[s]

σ
R

2
[µ

m
2
]

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

A1

A2

B1

B2

C1

C2

D1

t
1/2

t[s]

<
s’

r2
’>

[µ
m

2
]

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

FIG. 1: Root mean square of the square droplet radius fluc-
tuations �

R

2 versus time from the simulations (symbols) and
the prediction of the stochastic model (16) (lines). Inset: cor-

relation hs0R20i from the DNS simulations (thin lines) and the
stochastic model 15 (thick lines).
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 4A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0
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hs02i
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(12)
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2
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h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
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i(t)

T0
dt+ vrms

r
2
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T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
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+
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r
hs02i2dt
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⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous

3

R
2
-<R

2
> [µm

2
]

P
D

F

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

A1

A2

B1

C1

FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)
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dt+

+
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ws)hs02i
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T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
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T0
⇠i(t) (7)
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dt+A1w
0
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dt+

+
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⌘i(t) + Cws

r
hs02i2dt
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⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
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i(t)

T0
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2
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+
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r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
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= A1hw0R20i+ 2A3hs02i �
hs0R20i
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Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
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hs0R20iqs = 2A3A
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rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
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8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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and consequently
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1/2 =
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(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)
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Assuming statistical quasi-steady state we find that NON
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hs02iqs = A2
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rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
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and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous

4

t [s]

σ
R

2
[µ

m
2
]

10
1

10
2

10
3

10
4

20

60

100

140

E1

MODEL Reλ=5000

MODEL Reλ=10000

t [s]

<
s’

r2
’>

[µ
m

2
]

200 400 600 800 1000 1200

2.0E-03

5.0E-03

FIG. 3: Root mean square of the square droplet radius fluctu-
ations �

R

2 versus time for the LES simulations (symbols) and

the stochastic model (16) (lines). Inset: correlation hs0R20i
from the LES (thin line) and the stochastic model (15) (thick
line).

e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet
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FIG. 4: PDFs of the square radius fluctuations after a time
of 20 minutes from the LES data (symbols). The lines repre-
sent Gaussian with a variance proportional to that from the
proposed stochastic model (16).

radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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Standard	  deviaNon	  does	  not	  depend	  on	  dissipaNon	  and	  so	  on	  small	  scales	  but	  is	  proporNonal	  	  
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Comparisons	  with	  DNS	  results	  

●  The model 
approximates the 
largest simulation 

●  Smallest simulations are 
influenced by viscous 
effects of the smallest 
scales  

●  In general the stochastic 
model tends to 
overestimate 
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Error	  es7ma7on	  

● DNS/StochasNc	  model	  comparison	  
● EsNmate	  of	  the	  supersaturaNon	  fluctuaNons	  
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●  Stochastic models 
overestimates but…. 

●  The error tends to 
diminishing by 
increasing the large 
turbulent scales 

●  20% is already a good 
approximation for 
evaluating the order of 
magnitude 

●  We found an upper limit 
at no cost 



Why	  these	  differences?	  
Supersaturation variance equation 
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●  Balance between droplet 
sink and production 

●  At smallest scales viscous 
dissipation dominates 

●  Two different regime and 
supersaturation balance 
between small and large 
scales 

●  At large scale the s 
equation tend to the 
classical Twomey equation 



Comparison	  with	  Large	  Eddy	  
Simula7on	  

● We	  want	  to	  see	  the	  effects	  of	  the	  large	  scale	  on	  
droplet	  condensaNon	  
● Maximum	   cloud	   size	   in	   homogeneous	  
condiNons	  order	  100	  meters	  
● Classic	  Smagorinsky	  model	  for	  the	  fluid	  velocity	  
and	  supersaturaNon	  field	  
● Droplet	  number:	  order	  1015 à unfeaseableà use 

of renormalization as described in Lanotte et al., 2009	  
● Parameters	  
 

 

" = 10�3 m2s�3

vrms = 0.7 m/s

Re� = 5000



Large	  Eddy	  Simula7on	  
	  microphysics	  parametriza7on	  

●  We	  assume	  no	  sgs-‐model	  

●  àSupersaturaNon	  value	  is	  not	  evaluated	  at	  the	  droplet	  scale	  

●  LES	  does	  not	  evolve	  the	  correct	  number	  of	  dropletà	  rescaling	  

●  EquaNon	  for	  droplet	  radius	  

●  From	  DNS	  results	  

●  Small	  scale	  dynamics	  is	  lostà	  underesNmaNon	  

●  Now	  we	  have	  a	  lower	  limit	  at	  moderate	  cost	  
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Comparison	  with	  large	  DNS	  20483	  
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● LES filter small scales effect 

● DNS 10 days of computations in 4096 
cores on the 32nd TOP500 list 
supercomputer 
● LES almost 1 hour in 1 core on my laptop 
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FIG. 3: Root mean square of the square droplet radius fluctu-
ations �

R

2 versus time for the LES simulations (symbols) and

the stochastic model (16) (lines). Inset: correlation hs0R20i
from the LES (thin line) and the stochastic model (15) (thick
line).

e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet
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FIG. 4: PDFs of the square radius fluctuations after a time
of 20 minutes from the LES data (symbols). The lines repre-
sent Gaussian with a variance proportional to that from the
proposed stochastic model (16).

radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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●  Very good agreement for 
both standard deviation 
and correlation 

●  Model extension for higher 
Reynolds number 

●  Significant values of 
standard variation found 
after several minutes 

●  Importance to have longer 
simulations 

●  Impact of condensation 
has been underestimated 
in the last years  
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 3: Root mean square of the square droplet radius fluctu-
ations �

R

2 versus time for the LES simulations (symbols) and

the stochastic model (16) (lines). Inset: correlation hs0R20i
from the LES (thin line) and the stochastic model (15) (thick
line).

e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet
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FIG. 4: PDFs of the square radius fluctuations after a time
of 20 minutes from the LES data (symbols). The lines repre-
sent Gaussian with a variance proportional to that from the
proposed stochastic model (16).

radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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● Gaussian distribution 

● RMS is sufficient to characterize pdf 



Conclusions	  and	  perspec7ves/1	  

● New	   state	   of	   the	   art	   simulaNons	   able	   to	  
reproduce	   condensaNon	   growth	   with	   Nme	  
comparable	  with	  rain	  formaNon	  
● Standard	  deviaNon	  of	  square	  radius	  fluctuaNons	  
increases	   conNnuously	   in	   Nme	   according	   to	   a	  
power	  law	  
●  Importance	  of	  large/small	  scale	  separaNon	  
● ValidaNon	   of	   a	   simple	   stochasNc	  model	   that	   is	  
able	  to	  capture	  all	  the	  essenNal	  dynamics	  
● Droplet	  distribuNon	  seems	  to	  follow	  a	  Gaussian	  
curve	  

	  

 

 



Conclusions	  and	  perspec7ves/2	  

● Limit	  of	  our	  study:	  smallest	  droplets	  
●  Include	   Köhler	   model	   of	   nucleaNon	   of	   CCN	   in	  
our	  model	  
● Will	   the	   rms	   conNnue	   to	   increase	   or	   the	   final	  
droplet	  distribuNon	  will	  reach	  a	  steady	  state?	  
● Combining	  condensaNon+collisions	  	  
● Difficult	  but	  maybe	  more	  interesNng	  since	  
● CondensaNon—>large	  scale	  
● Collisionà	   small	   scales	   and	   difficult	   to	   include	  
in	  LES/stochasNc	  models	  

	  

 

 


