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Rain	
  forma7on	
  

•  Activation of Cloud Condensation 
Nuclei (CCN) 

•  Growth by condensation 

•  Growth by mixing/collision due to 
turbulence 

•  Growth by gravitational collision 



Turbulence	
  and	
  droplet	
  	
  
Condensa7on	
  DNS:	
  a	
  Brief	
  Excursus	
  

 

 
 

●  turbulence	
  has	
  been	
  indicated	
  as	
  the	
  key	
  missing	
  link	
  to	
  solve	
  condensaNon/
collision	
  coalescence	
  problem	
  

●  first	
   DNS	
   of	
   turbulence/cloud	
   interacNons	
   done	
   by	
   Vaillancourt	
   et	
   al.	
   2002.	
  
Domain	
   10cm,	
   resoluNon	
   803	
   grid	
   points,	
   droplets	
   50000à	
   Conclusion:	
  
negligible	
  effect	
  of	
  the	
  small-­‐scale	
  turbulence	
  on	
  droplet	
  spectra	
  broadening	
  

●  Celani	
   et	
   al.	
   2007,	
   resolving	
   large-­‐scale	
   fluctuaNons	
   2D	
   cloudà	
   Conclusion:	
  
dramaNc	
  increase	
  in	
  the	
  width	
  of	
  the	
  droplet	
  spectrum	
  is	
  qualitaNvely	
  found	
  
although	
  the	
  dynamics	
  of	
  the	
  small	
  scales	
  is	
  not	
  resolved	
  

●  Paolo	
  &	
  Sharif,	
  2009,	
  same	
  conclusions	
  but	
  3D	
  simulaNon	
  obtained	
  adding	
  an	
  
arbitrary	
  large-­‐scale	
  forcing	
  on	
  the	
  supersaturaNon	
  equaNon	
  field.	
  

●  Current	
  state	
  of	
  the	
  art:	
  Lano^e	
  et	
  al	
  2009,	
  3D	
  DNS	
  simulaNons	
  increasing	
  size	
  
of	
   the	
   cloud	
   up	
   to	
   70	
   cmà	
   turbulence	
   affects	
   droplet	
   spectra	
   broadening	
  
mechanism	
  by	
  increasing	
  the	
  cloud	
  size.	
  

 



Spectral	
  broadening	
  	
  
due	
  to	
  turbulence	
  

●  Increase of standard deviation with 

Reynolds number : Importance of large 

scales 

●  Upper limit   

●  Lower limit 

Lanotte, Seminara, Toschi, JAS 2009 

TL < ⌧s

TL > ⌧s

�R2 / A3A1v⌘⌧
2
⌘Re5/2�

�R2 / A3A1v⌘⌧⌘⌧sRe3/2�



Our	
  objec7ves	
  
 
1)  Has Droplet spectra variance in warm 

cloud been well approximated so far? 

2)  Metodologies: -Direct Numerical 
Simulation DNS 

3)  Current simulation time seconds/2 
minutesà up to 20 minutes 



Turbulence	
  and	
  condensa7on:	
  
mathema7cal	
  model	
  

Eulerian framework: Navier-Stokes + supersaturation field s 
à s>0 condensation s<0 evaporation 

@tu+ u ·ru = �1

⇢
rp+ ⌫r2u+ f , r · u = 0

@ts+ u ·rs = r2s+A1w � s

⌧s
⌧�1
s =

4⇡⇢wA2A3

V

NX

i=1

Ri

Phase relaxation time scale 

Lagrangian framework: droplet dynamics 
dVi(t)

dt
= �Vi � vi[Xi(t), t]

⌧d
+ gz

dXi(t)

dt
= Vi(t)

dRi(t)

dt
= A3

s[Xi(t), t]

Ri(t)

Droplet modeled as point 
particles 
 
Force acting on droplets: Stokes 
drag and gravity 

 

Possible	
  large	
  scale	
  forcing	
  of	
  supersaturaNon	
  

Same formulation of Lanotte et al., JAS 2009 



Numerical	
  Methodology	
  
● Combined	
  Eulerian/Lagrangian	
  Solver	
  
● Pseudo-­‐spectral	
  code	
  
● 2/3	
  rule	
  for	
  dealiasing	
  
● Tri-­‐linear	
  interpolaNon	
  to	
  evaluate	
  fluid	
  velocity	
  
and	
  saturaNon	
  field	
  at	
  the	
  droplet	
  posiNon	
  
● Tri-­‐linear	
   extrapolaNon	
   to	
   calculate	
   droplet	
  
feedback	
  on	
  the	
  saturaNon	
  field	
  
● Full	
   MPI	
   parallelizaNon	
   for	
   both	
   carrier	
   and	
  
dispersed	
  phase	
  
● ComputaNonal	
   Nme	
   step	
   linearly	
   scales	
   up	
   to	
  
10000	
  cores	
  à	
  huge	
  simulaNons	
  

 

 



Simula7ons	
  parameters	
  

 

 

●  Dissipation rate: 

●  Kolmogorov scale: 
●  Kolmogorov time: 

●  Initial Radius: 13 µm (1) 5 µm (2)                              

●  Phase relaxation time: 2.5 s (1) 7 s (2) 

 
 

" = 10�3 m2s�3

⌘ = 1 mm
⌧⌘ = 0.1 s

DNS E1: state of the art with 10243 grid point resolution  
corresponding to a domain length of 1.5 meters with  
109 droplets evolved. First DNS with cloud size order meter. 
 
E1, C2 and D1 do not reach 20 minutes of simulation 
  

Typical	
  value	
  found	
  in	
  
	
  	
  	
  	
  	
  	
  stratocumuli	
  

St⌘ = 3.5E � 2÷ 5E � 3

C = 130/cm3

3

�R2 ' Re
3/2
� . From (14) we note that �R2 at a fixed

time depends only on the scale separation represented
by Re� and not on the value of the mean dissipation
inside the clouds. This implies that clouds with di↵er-
ent dissipation rate and same Reynolds number have an
identical behavior in terms of droplet growth by conden-
sation. The droplet/turbulence condensation dynamics
does not depend on the turbulent small scales: the corre-
lation between the supersaturation field and the droplet
surface area, governing the distribution broadening, is
determined by the large flow scales. This result is in
contrast with the belief that the variance of the droplet
distribution should not grow indefinitely as turbulence
tends to decorrelate the particle size from the local sat-
uration field [8].

To test our predictions, we run simulations by gradu-
ally increasing the size of the computational clouds from
few centimeters to 100 m. The governing equations (1-
4) are solved with a classical pseudo-spectral code for
the fluid phase coupled with a Lagrangian algorithm for
the droplets [24]. All cases share the same turbulent ki-
netic energy dissipation " = 10�3m2s�3, a value typi-
cally measured in stratocumuli. This corresponds to the
same small-scale dynamics, with Kolmogorov scale ⌘ =
(⌫3/")1/4 ⇡ 1mm, Kolmogorov time ⌧⌘ = (⌫/")1/2 ⇡ 0.1s
and velocity v⌘ = ⌘/⌧⌘ ⇡ 1 cm/s. We examine droplets
with 2 di↵erent initial radii, 13µm and 5µm, denoted
as case 1 and 2, with supersaturation relaxation time
⌧s = 2.5 and 7s, and same concentration (130 droplets
per cm3). The reference temperature and pressure are
T = 283K and P = 105Pa, with A1 = 5 ⇥ 10�4m�1,
A2 = 350 m3/kg, A3 = 50µm2/s. The simulation param-
eters are reported in table I. Note that simulation DNS
D1 represent the largest Direct Numerical Simulation of
a warm cloud up to now.

The time evolution of �R2 =
p

h(R20)2i is shown in
Figure 1 for all cases investigated. The data confirm the
predictions from (13), i.e. that �R2 / t1/2.

Label N3 L
box

v
rms

T
L

T0 Re
�

N
d

[m] [m/s] [s] [s]
DNS A1/2 643 0.08 0.035 2.3 0.64 45 6⇥ 104

DNS B1/2 1283 0.2 0.05 4 0.95 95 9.8⇥ 105

DNS C1/2 2563 0.4 0.066 6 1.5 150 9⇥ 106

DNS D1 10243 1.5 0.11 14 3 390 4.4⇥ 108

DNS E1 20483 3 0.12 30 4 600 3.⇥ 109

LES E1 5123 100 0.7 142 33 5000 1.3⇥ 1014

TABLE I: Parameters of the simulations. The resolution N ,
the cloud size L

box

, the root mean square of the turbulent
velocity fluctuations v

rms

, and T
L

= L
box

/v
rms

an approxi-
mation of the large turbulent scales. T0 indicates the integral
time T0 = (⇡/2v3

rms

)
R
[E(k)/k]dk with k the wavenumber

and E(k) the turbulent kinetic energy spectra [22]. The total
number of droplets is indicated by N

d
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FIG. 1: Root mean square of the square droplet radius fluc-
tuations �

R

2 versus time from simulations (symbols) and the
prediction of the stochastic model (13) (lines). Inset: correla-

tion hs0R20i from simulations (thin lines) and from Equation
(12) (thick lines).
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FIG. 2: Root main square of the square droplet radius fluc-
tuations �

R

2 versus time for the LES simulations (symbols)

and the model (13) (lines). Inset: correlation hs0R20i from
the LES (thin line) and the model (12) (thick line).

The correlation hs0R20i is displayed in the inset of Fig-
ure 1 (thin solid line): In all cases, hs0R20i do reach a
statistical steady state, fluctuating around the value de-
termining the growth of �R2 . The turbulence creates a
positive correlation between supersaturation and droplet
surface area fluctuations that increases by increasing the
turbulent scale separation, i.e. the cloud size. The agree-
ment between the model and the numerical data is re-
markable for the largest domain sizes where scale separa-
tion is significant and viscous e↵ects can be neglected.
For small Re�, viscous e↵ects are important and the
stochastic inviscid model overestimates the correct be-
havior.

To test the model for a larger cloud size, we perform a



Conserva7ve	
  hypothesis	
  

● We	
  assume	
  <s>=0	
  à	
  all	
  is	
  due	
  to	
  s	
  fluctuaNons	
  
● No	
  mean	
  updraf	
  
● Consequently	
  <R2>=R02	
  
● Entrainment	
  effects	
  are	
  not	
  considered	
  (Kumar,	
  
Schumacher	
  and	
  Shaw,	
  JAS	
  2014)	
  
● AdiabaNc	
   approximaNonà	
   small	
   temperature	
  
fluctuaNons	
   (DNS	
  D1	
   T_rms=0.005	
   K)à	
   A1,	
   A2,	
  A3	
  costants	
  
● Effects	
  due	
  to	
  inhomogeneity	
  are	
  not	
  captured	
  
● Collisions	
  not	
  included	
  
● Our	
   results	
   represent	
   a	
   lower	
   limit	
   on	
   droplet	
  
growth 

 



DNS	
  results	
  

●         standard deviation of 
square radius fluctuations 

●  Standard deviation increases 
continuosly even if s has 
reached the quasi steady state 

●  Power law t1/2 

●  Proportional to Reλ and 	


●  Larger scales are responsible 

for variance growth 

●  Correlation            reaches a 
quasi-steady state	



2

divergence-free fluid velocity, p the pressure, ⇢ the air
density, f an external forcing to maintain a statistically
stationary state and ⌫ the kinematic viscosity. These ap-
proximations are valid for clouds smaller than L ⇡ 100 to
safely neglect the spatial inhomogeneity and large scale
variations of the thermodynamic parameters. The su-
persaturation field s is passively transported by the fluid
according to eq. (2), a generalization of the Twomey
model[20]. The di↵usivity of the water vapor in air is
denoted by , w is the velocity component in the gravity
direction, A1w is a source/sink term of supersaturation
resulting from the variation in temperature and pres-
sure with height. The supersaturation relaxation time
⌧s depends on droplet concentration and dimensions [21]
⌧�1
s = 4⇡⇢wA2A3

P
Ri/V where Ri are the radii of the

droplets in the volume V , ⇢w the water density, A1, A2

and A3 constant function of thermodynamic quantities
[19].The droplets are tracked in a Lagrangian framework:
assuming those as rigid spheres smaller than the smaller
flow scale, the Kolmogorov scale, and at low mass frac-
tion to neglect feedback on the flow, the only forces gov-
erning the droplet motion are gravity and the Stokes drag
(nucleation/activation is not considered):

dvd

dt
=

u(xd, t)� vd

⌧d
� gez (3)

dxd

dt
= vd (4)

dR2
i

dt
= 2A3s(xd, t) (5)

with xd and vd the droplet position and velocity, u(xd, t)
the fluid velocity at droplet position, ⌧d = 2⇢wR2

i /(9⇢⌫)
the droplet relaxation time, g the gravitational accelera-
tion and s(xd, t) the supersaturation at the droplet posi-
tion. The governing equations are solved with a classical
pseudo-spectral code for the fluid phase coupled with a
Lagrangian algorithm for the droplets, see [22].

We run a set of simulations by gradually increasing
the size of the computational clouds, from clouds of the
order of few centimeters to 100 meters. All the sim-
ulations share the same turbulent kinetic energy dissi-
pation " = 10�3m2s�3, a value typically measured in
stratocumuli. The di↵erent cases are characterized by
the same small-scale dynamics, with the Kolmogorov
scale ⌘ = (⌫3/")1/4 ⇡ 1mm, the Kolmogorov time
⌧⌘ = (⌫/")1/2 ⇡ 0.1s and velocity v⌘ = ⌘/⌧⌘ ⇡ 1 cm/s.
We examine two droplets populations with same concen-
tration (130 droplets per cubic centimeter) but di↵erent
initial radius and, consequently, supersaturation relax-
ation time ⌧s. These, denoted as case 1 and 2, have initial
radius 13µm and 5µm and ⌧s = 2.5, 7s, corresponding to
an initial Stokes number of St⌘ = ⌧d/⌧⌘ = 3.5e�2, 5e�3.
The reference temperature and pressure are T = 283K
and P = 105Pa and the thermodynamic constants A1 =
5E � 4 m�1, A2 = 350 m3/Kg, A3 = 50µ m2/s.

Label N3 L
box

[m] v
rms

[m/s] T
L

[s] T0[s] Re
�

N
d

DNS A1/2 643 0.08 0.035 2.3 0.64 45 6E4
DNS B1/2 1283 0.2 0.05 4 0.95 95 9.8E5
DNS C1/2 2563 0.4 0.066 6 1.5 150 9E6
DNS D1 10243 1.5 0.11 14 3 390 4.4E8
LES E1 5123 100 0.7 142 33 5000 1.3E14

TABLE I: Parameters of the simulations. The resolution N ,
the cloud size L

box

, the root mean square of the turbulent
velocity fluctuations v

rms

, and T
L

= L
box

/v
rms

an approx-
imation of the large turbulent scales. T0 indicates the inte-
gral time T0 = (⇡/2v3

rms

)
R
E(k)/kdk with k the wavenumber

and E(k) the turbulent kinetic energy spectra [23]. The total
number of droplets is indicated by N

d

.

The mean supersaturation is set to zero so that the
mean droplet radius does not change; we therefore ana-
lyze the most conservative case where the droplet spectral
broadening is only induced by supersaturation fluctua-
tions and not by a mean updraft. The simulation param-
eters are reported in table I. The Taylor Reynolds number
Re� = vrms�/⌫ accounts for the large/small scale sepa-
ration with � a typical scale of the intermediate eddies,
so-called Taylor microscale [23]. Note that simulation
DNS D1 represent the largest Direct Numerical Simula-
tion of a warm cloud up to now.
The broadening of the droplet size distribution is quan-

tified by the root mean square of the square droplet ra-
dius fluctuations, �R2 =

p
h(R20)2i, where h·i indicates

the droplet and 0 the fluctuation with respect to the mean
value hR2i = 0, because hsi = 0. The behavior of �R2

is shown in figure 1 in a log-log plot for all the simula-
tions (symbols). The most important observation is that
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FIG. 1: Root mean square of the square droplet radius fluc-
tuations �

R

2 versus time from the simulations (symbols) and
the prediction of the stochastic model (16) (lines). Inset: cor-

relation hs0R20i from the DNS simulations (thin lines) and the
stochastic model 15 (thick lines).
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 4A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write
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=
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dt
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and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
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the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2
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dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2
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dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
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= A1hw0R20i+ 2A3hs02i �
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Assuming statistical quasi-steady state we find that NON
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and consequently
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8hs02iqsA3(T0t)
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(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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radius fluctuations after a simulation time corresponding to
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the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:
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hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become
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and consequently
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1/2 =
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(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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radius fluctuations after a simulation time corresponding to
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the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20
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0
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where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
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= A1hw0R20i+ 2A3hs02i �
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Assuming statistical quasi-steady state we find that NON
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hs02iqs = A2
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rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 3: Root mean square of the square droplet radius fluctu-
ations �

R

2 versus time for the LES simulations (symbols) and

the stochastic model (16) (lines). Inset: correlation hs0R20i
from the LES (thin line) and the stochastic model (15) (thick
line).

e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet
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proposed stochastic model (16).

radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet
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of 20 minutes from the LES data (symbols). The lines repre-
sent Gaussian with a variance proportional to that from the
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radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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●  Very good agreement for 
both standard deviation 
and correlation 

●  Model extension for higher 
Reynolds number 

●  Significant values of 
standard variation found 
after several minutes 

●  Importance to have longer 
simulations 

●  Impact of condensation 
has been underestimated 
in the last years  
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FIG. 2: Probability density functions (Pdf) of the square
radius fluctuations after a simulation time corresponding to
about 20 minutes (symbols). The lines represent Gaussian
distributions with the same variance.

the droplet distribution never reaches a statistical steady
state; its variance increases continuously due to turbu-
lent fluctuations even if s has reached its quasi-steady
state value sqs. This implies that all the clouds will pre-
cipitate given a su�ciently long life-time. The fluctua-
tion level increases as t0.5 for all the simulations indepen-
dently of the Reynolds number; the spectral broadening
is faster at higher Reynolds numbers, i.e. when increasing
the large to small scale ratio, as in previous studies[8, 19]
where just the large scale turbulent fluctuations have a
dominant role on the droplet spectral broadening.NON
CAPISCO?

These findings can be explained by writing a equation
for the average of the droplet radius fluctuations. From
eq.(5), we write

dh(R20
i )2i
dt

=
d�2

R2

dt
= 2A3hs0R20i (6)

and note that h(R20
i )2i can linearly increase with time if

and only if the correlation hs0R20i reaches a statistical
steady state. This correlation has been extracted from
the DNS and displayed in the inset of figure 1 (thin solid
line). In all the cases the values of hs0R20i do reach a sta-
tistical steady state, fluctuating around a value determin-
ing the slope of �R2 . The turbulence creates a constant
correlation between supersaturation and droplet surface
area fluctuations that increases by increasing the turbu-
lent scale separation and consequently the cloud size.

The distribution of the square droplet radius after a
time of 20 minutes is shown in figure 2 for the longest
simulations available (symbols). The numerical data are
plotted against Gaussian curves of same variance �2

R2

(solid lines). From the data collapse, we conclude that
the droplet size distribution in a turbulent environment

with zero mean supersaturation is Gaussian and �R2 is
su�cient to correctly predict the size distribution.
To quantitatively estimate this droplet growth, we pro-

pose a 1-D stochastic model to describe the velocity fluc-
tuations and the supersaturation field for the i-th droplet:

w0
i(t+ dt) = w0

i(t)�
w0

i(t)

T0
dt+ vrms

r
2
dt

T0
⇠i(t) (7)

s0i(t+ dt) = s0i(t)�
s0i
T0

dt+A1w
0
idt�

s0i
h⌧si

dt+

+

r
(1� C2

ws)hs02i
2dt

T0
⌘i(t) + Cws

r
hs02i2dt

T0
⇠i(t) (8)

R20

i (t+ dt) = R20

i (t) + 2A3s
0
idt (9)

where Cws = hw0s0i/(vrms

p
hs02i) is the normalized

velocity-supersaturation correlation, h⌧si is the supersat-
uration relaxation time based on the mean droplet ra-
dius; homogeneous isotropic turbulence and supersatu-
ration are modelled via Langevin equations (7) and (8)
[23] where ⇠(t) and ⌘(t) are standardized Gaussian ran-
dom variables, �-correlated in time. From (7), (8) and
(9), assuming h⌧si ⌧ T0 as in real clouds, the fluctuation
correlations become

dhs0R20i
dt

= A1hw0R20i+ 2A3hs02i �
hs0R20i
h⌧si

(10)

dhw0R20i
dt

= 2A3hw0s0i � hw0R20i
T0

(11)

dhs02i
dt

= 2A1hw0s0i � 2
hs02i
h⌧si

(12)

dhw0s0i
dt

= A1v
2
rms �

hw0s0i
h⌧si

(13)

Assuming statistical quasi-steady state we find that NON
SI CAPISCONO I PASSAGGI

hs02iqs = A2
1v

2
rmsh⌧si2 (14)

hs0R20iqs = 2A3A
2
1v

2
rmsh⌧si2T0 = 2A3hs02iqsT0 (15)

and consequently

�R2 =
p
8A3A1vrmsh⌧si(T0t)

1/2 =
q

8hs02iqsA3(T0t)
1/2

(16)

the square of the quasi-steady supersaturation in (14) is
equal to the expression found in [19]. The relation (16)
confirms that �R2 / t1/2 as found in the simulations;
the limitation for the slope of �R2 is given by the the
quasi steady state value of the supersaturation. These
predictions for �R2 and hs0R20i are displayed against
the DNS data in figure 1 (and inset) with thick solid
lines. As expected, we find good agreement between the
model and the numerical data for the largest domain sizes
where scale separation is significant and the viscous ef-
fects can be neglected. For small domains, the viscous
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FIG. 3: Root mean square of the square droplet radius fluctu-
ations �

R

2 versus time for the LES simulations (symbols) and

the stochastic model (16) (lines). Inset: correlation hs0R20i
from the LES (thin line) and the stochastic model (15) (thick
line).

e↵ects are important and the stochastic inviscid model
overestimates the correct behavior.

To validate the model for a larger cloud size, we per-
form a Large Eddy Simulation (LES E1) of a cloud of
about 100 meters. LES can be seen as a good model for
our problem since it well resolves the larger flow scale,
those relevant to droplet condensation/evaporation. We
model the small scales with a classic Smagorinski model
[24] and use the method of droplet renormalization de-
scribed in [19] to evolve a feasible droplet number. The
Taylor Reynolds number is 5000. The time evolution of
�R2 and of hs0R20i are depicted in 3. The analytical pre-
dictions from (15) and (16) well fit the numerical data as
shown in figure 3, thus validating our stochastic model.
Expression (16) can be formulated in terms of Kolmogorv

scales since vrms ' Re1/2� v⌘ and T0 ' 0.06Re�⌧⌘ [23]:

�R2 ' 0.7A3A1⌫
1/2h⌧siRe�t

1/2 (17)

for t = T0 (short times) the lower limit proposed in [19]

is recovered, �R2 ' Re3/2� . From (17) we note that �R2

at a fixed time depends only on the scale separation rep-
resented by Re� and does not depends on the value of
the mean dissipation inside the clouds. This implies that
two clouds with di↵erent dissipations and same Reynolds
number have an identical behavior in terms of droplet
growth by condensation. This confirms once more that
droplet/turbulence condensation dynamics does not de-
pend on the turbulent small scales: the correlation be-
tween the supersaturation field and the droplet surface
area, governing the distribution broadening, is deter-
mined by the large flow scales.

The estimated behavior for a cloud with Re� = 10000
is also reported in figure 3. The rms of the square droplet

R
2
-<R

2
> [µm

2
]

P
D

F

-200 0 200
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1 E1

MODEL Reλ=5000

MODEL Reλ=10000

FIG. 4: PDFs of the square radius fluctuations after a time
of 20 minutes from the LES data (symbols). The lines repre-
sent Gaussian with a variance proportional to that from the
proposed stochastic model (16).

radius �R2 reaches not negligible values. The droplet size
distribution at a simulated time of almost 20 minutes.
is shown in figure 4. LEVEREI FIGURA 4 Also at this
higher Reynolds number the shape of the pdf is Gaussian
and can be fitted just with the value of �R2 from the
proposed model.
To solve the warm rain bottleneck problems, we pro-

pose and validate a predictive model for the role of turbu-
lence on the dynamics of droplet condensation in warm
clouds. We show that the root mean square of the square
droplet radius fluctuations �R2 increases in time as t0.5;
the growth linearly depends on the turbulent scale sepa-
ration, parametrized by Re� and not on the small scale
dynamics, ruled by the value of the mean cloud kinetic
energy dissipation ". Our results represents a lower limit
for the impact of turbulence on warm rain formation since
real clouds are larger then 100 meters and in general non-
homogeneous, anisotropic and characterized by values of
Re� larger than those employed in our simulations. Ac-
cording to the model these would lead to even larger val-
ues of �R2 , more than su�cient to explain the spectral
broadening observed in real clouds.
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● Gaussian distribution 

● RMS is sufficient to characterize pdf 
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  and	
  perspec7ves/1	
  

● New	
   state	
   of	
   the	
   art	
   simulaNons	
   able	
   to	
  
reproduce	
   condensaNon	
   growth	
   with	
   Nme	
  
comparable	
  with	
  rain	
  formaNon	
  
● Standard	
  deviaNon	
  of	
  square	
  radius	
  fluctuaNons	
  
increases	
   conNnuously	
   in	
   Nme	
   according	
   to	
   a	
  
power	
  law	
  
●  Importance	
  of	
  large/small	
  scale	
  separaNon	
  
● ValidaNon	
   of	
   a	
   simple	
   stochasNc	
  model	
   that	
   is	
  
able	
  to	
  capture	
  all	
  the	
  essenNal	
  dynamics	
  
● Droplet	
  distribuNon	
  seems	
  to	
  follow	
  a	
  Gaussian	
  
curve	
  

	
  

 

 



Conclusions	
  and	
  perspec7ves/2	
  

● Limit	
  of	
  our	
  study:	
  smallest	
  droplets	
  
●  Include	
   Köhler	
   model	
   of	
   nucleaNon	
   of	
   CCN	
   in	
  
our	
  model	
  
● Will	
   the	
   rms	
   conNnue	
   to	
   increase	
   or	
   the	
   final	
  
droplet	
  distribuNon	
  will	
  reach	
  a	
  steady	
  state?	
  
● Combining	
  condensaNon+collisions	
  	
  
● Difficult	
  but	
  maybe	
  more	
  interesNng	
  since	
  
● CondensaNon—>large	
  scale	
  
● Collisionà	
   small	
   scales	
   and	
   difficult	
   to	
   include	
  
in	
  LES/stochasNc	
  models	
  

	
  

 

 


