Numerical study of droplet growth by condensation by means of massive DNS simulations

Gaetano Sardina, Rodrigo Caballero

Department of Meteorology, SeRC, Stockholm University, Sweden Luca Brandt, Francesco Picano

Linné FLOW Centre, SeRC, KTH Stockholm, Sweden

gaetano.sardina@misu.su.se

Eulerian vs. Lagrangian methods for cloud microphysics Workshop Warsaw 21st April 2015

Rain formation

- Activation of Cloud Condensation Nuclei (CCN)
- Growth by condensation
- Growth by mixing/collision due to turbulence
- Growth by gravitational collision

Turbulence and droplet Condensation DNS: a Brief Excursus Sto

- turbulence has been indicated as the key missing link to solve condensation/ collision coalescence problem
- first DNS of turbulence/cloud interactions done by Vaillancourt et al. 2002.
 Domain 10cm, resolution 80³ grid points, droplets 50000→ Conclusion:
 negligible effect of the small-scale turbulence on droplet spectra broadening
- Celani et al. 2007, resolving large-scale fluctuations 2D cloud → Conclusion: dramatic increase in the width of the droplet spectrum is qualitatively found although the dynamics of the small scales is not resolved
- Paolo & Sharif, 2009, same conclusions but 3D simulation obtained adding an arbitrary large-scale forcing on the supersaturation equation field.
- Current state of the art: Lanotte et al 2009, 3D DNS simulations increasing size of the cloud up to 70 cm→ turbulence affects droplet spectra broadening mechanism by increasing the cloud size.

Lanotte, Seminara, Toschi, JAS 2009

- Reynolds number : Importance of large scales
- Upper limit $T_L < au_s$ $\sigma_{R^2} \propto A_3 A_1 v_\eta au_\eta^2 R e_\lambda^{5/2}$
- Lower limit $T_L > \tau_s$ $\sigma_{R^2} \propto A_3 A_1 v_\eta \tau_\eta \tau_s R e_\lambda^{3/2}$

Our objectives

- 1) Has Droplet spectra variance in warm cloud been well approximated so far?
- 2) Metodologies: -Direct Numerical Simulation DNS
- Current simulation time seconds/2 minutes→ up to 20 minutes

Turbulence and condensation: mathematical model

Eulerian framework: Navier-Stokes + supersaturation field s \rightarrow s>0 condensation s<0 evaporation

→ s>0 condensation s<0 evaporation $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$

$$\partial_t s + \mathbf{u} \cdot \nabla s = \kappa \nabla^2 s + A_1 w - \frac{s}{\tau_s}$$

Possible large scale forcing of supersaturation

$$\tau_s^{-1} = \frac{4\pi\rho_w A_2 A_3}{V} \sum_{i=1}^N R_i$$

Phase relaxation time scale

 $\begin{aligned} & \frac{d\mathbf{V}_{i}(t)}{dt} = -\frac{\mathbf{V}_{i} - \mathbf{v}_{i}[\mathbf{X}_{i}(t), t]}{\tau_{d}} + g\mathbf{z} & \text{pressure} \\ & \frac{d\mathbf{X}_{i}(t)}{dt} = \mathbf{V}_{i}(t) & \text{Formula} \\ & \frac{dR_{i}(t)}{dt} = A_{3}\frac{s[\mathbf{X}_{i}(t), t]}{R_{i}(t)} & \text{Same formula} \end{aligned}$

Droplet modeled as point particles

Force acting on droplets: Stokes drag and gravity

Same formulation of Lanotte et al., JAS 2009

Numerical Methodology

- Combined Eulerian/Lagrangian Solver
- Pseudo-spectral code
- 2/3 rule for dealiasing
- Tri-linear interpolation to evaluate fluid velocity and saturation field at the droplet position
- Tri-linear extrapolation to calculate droplet feedback on the saturation field
- Full MPI parallelization for both carrier and dispersed phase
- Computational time step linearly scales up to 10000 cores → huge simulations

Simulations parameters

									North
Label	N^3	L_{box}	v_{rms}	T_L	T_0	Re_{λ}	N_{c}	ł	Stockholme
		[m]	[m/s]	[s]	[s]				JUDICKHOITHS
DNS $A1/2$	64^{3}	0.08	0.035	2.3	0.64	45	6×1	10^4	universitet
DNS $B1/2$	128^{3}	0.2	0.05	4	0.95	95	$9.8 \times$	10^{5}	
DNS $C1/2$	256^{3}	0.4	0.066	6	1.5	150	9×1	10^6	
DNS D1	1024^{3}	1.5	0.11	14	3	390	$4.4 \times$	10^{8}	
DNS E1	2048^{3}	3	0.12	30	4	600	3. imes	10^{9}	
LES E1	512^{3}	100	0.7	142	33	5000	$1.3 \times$	10^{14}	
Dissipation r Kolmogorov	ate: ٤ scale:	$arepsilon = \eta$	= 10	-3 [m	$\frac{n^2s}{m}$	3^{-3}	Typi s	cal value found in tratocumuli
	11	—		1		2			

- Kolmogorov time: $au_\eta = 0.1$ s
- Initial Radius: 13 µm (1) 5 µm (2) $St_{\eta} = 3.5E 2 \div 5E 3$ Phase relaxation time: 2.5 s (1) 7 s (2) $C = 130/cm^3$

DNS E1: state of the art with 1024³ grid point resolution corresponding to a domain length of 1.5 meters with 10⁹ droplets evolved. First DNS with cloud size order meter.

E1, C2 and D1 do not reach 20 minutes of simulation

Conservative hypothesis

- We assume $<s>=0 \rightarrow$ all is due to s fluctuations
- No mean updraft
- Consequently $\langle R^2 \rangle = R_0^2$
- Entrainment effects are not considered (Kumar, Schumacher and Shaw, JAS 2014)
- Adiabatic approximation → small temperature fluctuations (DNS D1 T_rms=0.005 K) → A₁, A₂, A₃ costants
- Effects due to inhomogeneity are not captured
- Collisions not included
- Our results represent a lower limit on droplet growth

 $\frac{d\langle (R_i^{2'})$

dt

DNIC maguilta

- σ_{R^2} standard deviation of square radius fluctuations
- Standard deviation increases continuosly even if s has reached the quasi steady state
- Power law t^{1/2}
- Proportional to $\operatorname{Re}_{\lambda}$ and \mathcal{T}_{S}
- Larger scales are responsible for variance growth
- Correlation $\langle s' R^{2'} \rangle$ reaches a quasi-steady state

$$\frac{\left| {}^{2} \right\rangle}{dt} = \frac{d\sigma_{R^{2}}^{2}}{dt} = 4A_{3} \langle s' R^{2'} \rangle$$

$$\begin{aligned} \mathbf{1-D \ stochastic \ model/1} \\ w_i'(t+dt) &= w_i'(t) - \frac{w_i'(t)}{T_0} dt + v_{rms} \sqrt{2 \frac{dt}{T_0}} \xi_i(t)^{\text{Stockholms}} \\ s_i'(t+dt) &= s_i'(t) - \frac{s_i'}{T_0} dt + A_1 w_i' dt - \frac{s_i'}{\langle \tau_s \rangle} dt + \\ &+ \sqrt{(1-C_{ws}^2) \langle s'^2 \rangle \frac{2dt}{T_0}} \eta_i(t) + C_{ws} \sqrt{\langle s'^2 \rangle \frac{2dt}{T_0}} \xi_i(t) \end{aligned}$$

$$R_i^{2'}(t+dt) = R_i^{2'}(t) + 2A_3s_i'dt$$

$$C_{ws} = \langle w's' \rangle / (v_{rms} \sqrt{\langle s'^2 \rangle})$$

 T_0

velocity/supersaturation auto-correlation

Large eddy turn over time

$$\begin{aligned} 1-D \ stochastic \ model/2\\ \frac{d\langle s'R^{2'}\rangle}{dt} &= A_1\langle w'R^{2'}\rangle + 2A_3\langle s'^2\rangle - \frac{\langle s'R^{2'}\rangle}{\langle \tau_s\rangle}\\ \frac{d\langle w'R^{2'}\rangle}{dt} &= 2A_3\langle w's'\rangle - \frac{\langle w'R^{2'}\rangle}{T_0}\\ \frac{d\langle s'^2\rangle}{dt} &= 2A_1\langle w's'\rangle - 2\frac{\langle s'^2\rangle}{\langle \tau_s\rangle}\\ \frac{d\langle w's'\rangle}{dt} &= A_1v_{rms}^2 - \frac{\langle w's'\rangle}{\langle \tau_s\rangle} \quad \text{Steady state} \Rightarrow\\ \langle s'^2\rangle_{qs} &= A_1^2v_{rms}^2\langle \tau_s\rangle^2\\ \langle s'R^{2'}\rangle_{qs} &= 2A_3A_1^2v_{rms}^2\langle \tau_s\rangle^2T_0 = 2A_3\langle s'^2\rangle_{qs}T_0\\ \text{and consequently} \end{aligned}$$

Stockholms universitet

$$\sigma_{R^2} = \sqrt{8}A_3A_1v_{rms}\langle\tau_s\rangle(T_0t)^{1/2} = \sqrt{8\langle s'^2\rangle_{qs}}A_3(T_0t)^{1/2}$$

since $v_{rms} \simeq Re_{\lambda}^{1/2}v_{\eta}$ and $T_0 \simeq 0.06Re_{\lambda}^{1/2}\tau_{\eta}$

$$\sigma_{R^2} \simeq 0.7 A_3 A_1 \nu^{1/2} \langle \tau_s \rangle Re_\lambda t^{1/2}$$

Standard deviation does not depend on dissipation and so on small scales but is proportional to scale separation

Comparisons with DNS results

- The model approximates the largest simulation
- Smallest simulations are influenced by viscous effects of the smallest scales
- In general the stochastic model tends to overestimate

Error estimation

- DNS/Stochastic model comparison
- Estimate of the supersaturation fluctuations

- Stochastic models overestimates but....
- The error tends to diminishing by increasing the large turbulent scales
- 20% is already a good approximation for evaluating the order of magnitude
- We found an upper limit at no cost

Why these differences?

universitet

Comparison with Large Eddy Simulation

- We want to see the effects of the large scale on droplet condensation
- Maximum cloud size in homogeneous conditions order 100 meters
- Classic Smagorinsky model for the fluid velocity and supersaturation field
- Droplet number: order 10¹⁵ → unfeaseable→ use of renormalization as described in Lanotte et al., 2009
- Parameters $\varepsilon = 10^{-3}$ $m^2 s^{-3}$ $v_{rms} = 0.7$ m/s $Re_{\lambda} = 5000$

Large Eddy Simulation microphysics parametrization

- We assume no sgs-model
- \rightarrow Supersaturation value is not evaluated at the droplet scale
- LES does not evolve the correct number of droplet \rightarrow rescaling
- Equation for droplet radius

$$\frac{dR_i^2}{dt} = 2A_3(s_{res} + s_{sgs}) - - > \frac{d\langle (R_i^{2'})^2 \rangle}{dt} = \frac{d\sigma_{R^2}^2}{dt} = 4A_3(\langle s'R^{2'} \rangle_{res} + \langle s'R^{2'} \rangle_{sgs})$$

- From DNS results $\langle s'R^{2'}
 angle_{res}>>\langle s'R^{2'}
 angle_{sgs}$
- Small scale dynamics is lost \rightarrow underestimation
- Now we have a lower limit at moderate cost

Comparison with large DNS 2048

- DNS 10 days of computations in 4096 cores on the 32nd TOP500 list supercomputer
- LES almost 1 hour in 1 core on my laptop

Model vs LES

- Very good agreement for both standard deviation and correlation
- Model extension for higher Reynolds number
- Significant values of standard variation found after several minutes
- Importance to have longer simulations
- Impact of condensation has been underestimated in the last years

Droplet distribution

RMS is sufficient to characterize pdf

Conclusions and perspectives/1

Stockholms universitet

- New state of the art simulations able to reproduce condensation growth with time comparable with rain formation
- Standard deviation of square radius fluctuations increases continuously in time according to a power law

Importance of large/small scale separation
Validation of a simple stochastic model that is able to capture all the essential dynamics
Droplet distribution seems to follow a Gaussian curve

Conclusions and perspectives/2

Stockholms universitet

- Limit of our study: smallest droplets
- Will the rms continue to increase or the final droplet distribution will reach a steady state?
- Combining condensation+collisions
- Difficult but maybe more interesting since
- Condensation—>large scale
- Collision
 Small scales and difficult to include in LES/stochastic models