Turbulence Statistics in Thunderstorm Clouds

Joydeep Sarkar, Marta Wacławczyk, Szymon Malinowski

Institute of Geophysics Faculty of Physics University of Warsaw

http://www.tohsep.com/SevereWeather/Thunderstorms

~ Cell ~ Byers-Braham Cell

Practical Meteorology: An Algebra-based Survey of Atmospheric Science v1.02b

Ε

http://www.atmo.arizona.edu/students/courselinks/spring15/atmo589/ ATMO489_online/lecture_11/lect11_cloud_electrification.html Takahashi (1978)

Geophysical Research Letters^{*}

RESEARCH LETTER

10.1029/2021GL095923

Key Points:

 Observations of turbulence intensity along flash propagation support inertial range eddies' role in

Assessment of Turbulence Intensity in Different Spots of Lightning Flash Propagation

Jessica C. S. Souza¹ ^(D) and Eric C. Bruning¹ ^(D)

¹Department of Geosciences, Atmospheric Science Group, Texas Tech University, Lubbock, TX, USA

Severe Thunderstorm Electrification and Precipitation Study (STEPS)

- 22 May through 9 July, 2000, Goodland(Kansas)
- Precipitation, storm electrification studies and hydrometeor identification studies
- Convective storms Mature stage

Flight Number	Date	Time (UTC)
747	5/25/00	23:25-00:20
748	5/26/00	22:01-22:35
750	6/01/00	00:38-01:49
751	6/03/00	23:49-01:05
752	6/06/00	23:51-01:12
753	6/09/00	21:13-22:29
754	6/11/00	21:26-22:36
755	6/12/00	23:26-23:57
756	6/20/00	00:17-01:45
757	6/22/00	23:29-01:09
758	6/23/00	22:24-23:39
759	6/25/00	00:48-02:17
761	6/29/00	22:33-23:54

$$S_2(r) = \left\langle [u(x+r) - u(x)]^2 \right\rangle$$

• Measures how a physical quantity like velocity changes with scale (space or time).

• In the inertial subrange of turbulence(between large energy-containing scales and small dissipative scales), Kolmogorov's 1941 theory (K41) states.

$$S_2(r) = C \, \varepsilon^{2/3} \, r^{2/3}$$

$$\log_{10} S_2(r) = \alpha \log_{10} r + \log_{10} A$$
$$\varepsilon = \left(\frac{A}{C}\right)^{3/2}$$

Conclusions

- The strength of EF is higher in region of high LWC
- EF shows inverse correlation with dissipation
- Lightning? Regions of weak turbulence (More data)
- Future plans extension of current calculation data to the 3 stages of thunderstorm