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Background

LPBM – Lagrangian Particle-Based
Microphysics models track the evolu-
tion (snigle- and many-particle phys-
iochemical processes) and transport of
notional particles, and are an alterna-
tive to Eulerian bulk or bin methods

Model developments

drop breakup
Collisional breakup poses a challenge to
LPBM in terms of comp. scaling, as
the fragments produced in collisions may
have many different sizes. In [4], a Monte-
Carlo scheme is proposed that avoids creat-
ing new superdroplets, respecting the phys-
ical probability of coalescence/breakup and
the fragment size distribution.

Fig. 1: Sample comparison of drop
spectra with and without breakup in
a single-column (KiD/PySDM) kine-
matic framework

habit prediction/ventilation
Being able to track the history of individ-
ual representative particles, LPBMs are
well suited to tackle ice habits. Taking into
account a habit dependent ventilation im-
proves the physics of cirrus clouds [17].

Fig. 2: Data evidence that columns expe-
rience stronger ventilation than spheres or
plates. Solid lines: parameterization for
LPBM that include habit prediction

performance optimizations
Optimizations discussed in [11] led to an
LPBM module for SCALE-SDM
with computational cost comparable to a
2-mom. bulk method (see Fig. 3). A 2m
grid-length shallow cloud LES in a ∼10 km2

domain is used for performance evalua-
tion; depicts path to turbulence and micro-
physics studies over wide range of scales.
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Fig. 3: Total simulation time (circles, trian-
gles) and tracer advection and SD tracking
time (squares) for bulk, bin, pre- (SDM-
orig) and post-optimization (SDM-new)

CPU + GPU + MPI
In [7], the performance of hybrid
MPI+threading+GPU mode of operation
of UWLCM is explored, see Fig. 8.
On 40 nodes, wall time of CPU+GPU
LPBM is twice that of CPU-only bulk.

Validation

CM1-SDM/balloon-borne obs
Laboratory experiments of particle growth
(tied to crystal morphology via vapor
deposition density) are combined with
LES+LPBM simulations to examine
sources of microphysical variability in cir-
rus. Cirrus case from ARM Ice Cryo-
Encapsulation by Balloon (ICE-Ball) cam-
paign. Variability is dominated by parti-
cles’ thermodynamic histories (see Fig. 4),
however, diversity in crystal morphol-
ogy notably increases spatial variability of
mean particle size and density.

Fig. 4:(a) Selected ice particle trajectories
sampled at 15 s intervals (trajectory length
> 900 m). Evolution of the ice particle
size distributions (b-c) with particle age af-
ter nucleation (τl). Color bars: probability;
squares: mean values; black lines: running
mean; red lines: 90th percentile; and blue
lines: 10th percentile. See [2]

Π chamber
A model intercomparison study is under-
way within the framework of the ICCP In-
ternational Cloud Modeling Workshop, in-
cluding comparison of LPBM simula-
tions with holographic particle size spec-
trometry inside the MTU Π chamber.

Monte-Carlo
vs. deterministic collisions

In [12], three methods for drop coales-
cence in LPBM are compared: deter-
ministic average impact method (AIM),
Monte-Carlo (SDM), deterministic SDM
(dSDM). Results highlight the critical role
of statistical fluctuations (“lucky drops”) in
driving rain formation in warm clouds.

Fig. 5:Warm rain in LES of a Cu con cloud
is substantially delayed using dSDM (red
and blue lines, thick lines are mean and thin
lines are ±σ) versus SDM (black lines)

Applications

cirrus & contrail studies
In [16], LES of natural and contrail cirri
were carried out. Scenarios where con-
trails were surrounded by later forming nat-
ural cirrus were investigated. An impor-
tant question was to understand whether
contrails (as an anthropogenic cloud) would
remain distinguishable from natural cirrus
when sampled in in-situ measurement cam-
paigns. The analyses benefited from the
use of LPBM (no numerical diffusion in
space, freely evolving ice crystal size distri-
butions, inexpensive tagging of origin).

Natural cirrus

t = 4h contrail cirrus

natural cirrus

total size
distribution

Fig. 6: L: snapshot of a contrail becom-
ing surrounded by natural cirrus (extinc-
tion coefficient plotted); R: ice crystal size
distribution of such a dual-origin ice cloud

marine cloud brightening
LPBM have been used to support
assessment of marine cloud brighten-
ing as a viable climate engineering ap-
proach (through increasing the reflectance
of clouds by artificially increasing the
aerosol and hence droplet concentration).
LES+LPBM setup allows simulat-
ing: the sprayers that disperse seawater
droplets, evaporation of droplets to sea salt
aerosols that are lifted to the cloud layer,
where they activate; [9] addressed the op-
timal size distribution of sprayed particles;
[10] their transport to the clouds (Fig. 7).

Fig. 7: Sprayed particle plume (yellow) is
lifted to the clouds (white), where some of
the sprayed aerosols activate (magenta).

marine stratocumulus
Recent LES+LPBM marine Sc stud-
ies: [6] assessed the impact of LES vs.
iLES, whereas [8] applied Linear Eddy
Model for subgrid RH; [5] found giant
CCNs significantly increase precipitation;
[3] studied the transition to open-cell;
[18] investigated the grid convergence and
a comparison with 2-moment.

machine learning
Particle-based models are used for simula-
tions to provide training data for machine
learning models: [13, 14, 15, 1]

Fig. 8: Scaling of the time
to complete a time step
of LPBM LES on a
CPU+GPU cluster

Open Source LPBM Software

• McSnow: aims at understanding precipitation
formation via mixed-phase processes
https://gitlab.dkrz.de/mcsnow/mcsnow

• PySDM: tutorial notebooks based on 30+ papers
https://github.com/open-atmos/PySDM

• SCALE-SDM: mixed-phase LES+SDM
https://github.com/Shima-Lab

• UWLCM: hybrid MPI+CPU+GPU LES
https://github.com/igfuw/UWLCM
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