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Abstract. This paper accompanies the f rst release of libmp-
data++, a C++ library implementing the multi-dimensional
positive-def nite advection transport algorithm (MPDATA)
on regular structured grid. The library offers basic nu-
merical solvers for systems of generalised transport equa-
tions. The solvers are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library covers the basic
second-order-accurate formulation of MPDATA, its third-
order variant, the inf nite-gauge option for variable-sign
f elds and a f ux-corrected transport extension to guarantee
non-oscillatory solutions. The library is equipped with a non-
symmetric variational elliptic solver for implicit evaluation
of pressure gradient terms. All solvers offer parallelisation
through domain decomposition using shared-memory paral-
lelisation.
The paper describes the library programming interface,

and serves as a user guide. Supported options are illus-
trated with benchmarks discussed in the MPDATA literature.
Benchmark descriptions include code snippets as well as
quantitative representations of simulation results. Examples
of applications include homogeneous transport in one, two
and three dimensions in Cartesian and spherical domains;
a shallow-water system compared with analytical solution
(originally derived for a 2-D case); and a buoyant convec-
tion problem in an incompressible Boussinesq f uid with in-
terfacial instability. All the examples are implemented out
of the library tree. Regardless of the differences in the prob-
lem dimensionality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the examples use the
same unmodif ed library, which is a key goal of libmpdata++
design. The design, based on the principle of separation of

concerns, prioritises the user and developer productivity. The
libmpdata++ library is implemented in C++, making use of
the Blitz++ multi-dimensional array containers, and is re-
leased as free/libre and open-source software.

1 Introduction

The MPDATA advection scheme introduced in Smo-
larkiewicz (1983) has grown into a family of numeri-
cal algorithms for geosciences and beyond (see for ex-
ample Grabowski and Smolarkiewicz, 2002; Cotter et al.,
2002; Smolarkiewicz and Szmelter, 2009; Ortiz and
Smolarkiewicz, 2009; Hyman et al., 2012; Charbonneau
and Smolarkiewicz, 2013). MPDATA stands for multi-
dimensional positive-def nite advection transport algorithm1.
It is a f nite-difference/f nite-volume algorithm for solving
the generalised transport equation

∂t(Gψ )+∇ · (Guψ ) =GR. (1)

Equation (1) describes the advection of a scalar f eld ψ in
a f ow with velocity u. The f eld R on the right-hand side
(rhs) is a total of source/sink terms. The scalar f eld G can
represent the f uid density, the Jacobian of coordinate trans-
formation or their product and satisf es the equation

∂t(G)+∇ · (Gu) = 0. (2)

1In fact, MPDATA is sign-preserving, rather than merely
positive-def nite, but for historical reasons the name remains un-
changed.

Published by Copernicus Publications on behalf of the European Geosciences Union.

Geosci. Model Dev. policy (doi: 10.5194/gmd-6-1233-2013)

I “paper must be accompanied by the code, or means of accessing

the code, for the purpose of peer-review”

I “we strongly encourage referees to compile the code, and run test

cases supplied by the authors”
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tests

Travis CI

10/17/2014 Travis CI - Free Hosted Continuous Integration Platform for the Open Source Community

https://travis-ci.org/igfuw/libmpdataxx/jobs/37758264 1/91

+

Search all repositories

My Repositories  Recent

 igf uw/libmpdataxx

Duration: 48 min 50 sec

Finished: 4 days ago

42

 igf uw/shallow-water-elliptic-drop

Duration: 7 min 55 sec

Finished: 23 days ago

2

 

#42.1 passed

ran for 28 min 45 sec
4 days ago

 

igfuw/libmpdataxx  

libmpdata++ - a library of  parallel MPDATA-based solvers f or systems of  generalised
transport equations

Current  Build History  Pull Requests  Branch Summary  Build #42

Job #42.1

master - f ixing tests/unit/shallow_water

      

buildbuild unknownunknown

slayoo authored and committed

Commit d219d3b #157: moving shallow_water solver from thests to the library tree;

libmpdata++-config.cmake

1 Using worker: worker-linux-4-2.bb.travis-ci.org:travis-linux-11
2
3 $ git clone --depth=50 1.29s

11 $ cd igfuw/libmpdataxx
12 $ git fetch origin +refs/pull/157/merge: 0.14s

19 $ git checkout -qf FETCH_HEAD
20 stop: Unknown instance: 
21 $ export CXX=g++
22 $ export CC=gcc
23 $ gcc --version 0.01s

24 gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
25 Copyright (C) 2011 Free Software Foundation, Inc.

git.1

git.4
git.5

Home  Blog  Status   Travis CI for Private RepositoriesHelp Maciej Waruszewski
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ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model
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