
On the design and cloud-modelling applications
of libmpdata++

Anna Jaruga, Sylwester Arabas, Maciej Waruszewski

and the cloud-aerosol modelling team
Institute of Geophysics, Faculty of Physics, University of Warsaw

Workshop on Eulerian vs. Lagrangian methods for cloud microphysics
20th-22nd of April 2015

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

cloud-aerosol modelling team @ University of Warsaw
the team (http://foss.igf.fuw.edu.pl/)

I prof. Hanna Paw lowska (group leader)

I in Warsaw:
I Sylwester Arabas (postdoc)
I Piotr Dziekan (postdoc)
I Anna Jaruga (PhD student)
I Maciej Waruszewski (PhD student)
I Anna Zimniak (MSc student)

I overseas:
I prof. Piotr Smolarkiewicz @ ECMWF
I prof. Wojciech Grabowski @ NCAR
I Dorota Jarecka @ NCAR (postdoc)

aim: developing tools for studying aerosol-cloud interactions

I novel cloud/aerosol microphysics models,

I state-of-the-art numerical schemes,

I modern coding techniques
; priorities: researchers’ productivity and result reproducibility

http://foss.igf.fuw.edu.pl/

outline

On the design

and cloud-modelling applications of

libmpdata++

outline

On the design

and cloud-modelling applications of

libmpdata++

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

MPDATA

Multi-dimensional Positive-Definite Advection Transport Algorithm

I introduced in 1983 by Smolarkiewicz

I at least second-order-accurate

I sign-preserving

I iterative scheme in which all iterations take the form of a
first-order-accurate donor-cell pass

I among the MPDATA options there are:
I non-oscillatory option ensuring ripple-free solutions
I accounting for third-order terms leading to more accurate

solutions
I option for transporting variable sign fields

In our project it will serve as a dynamical core for our LES model

outline

On the design

and cloud-modelling applications of

libmpdata++

outline

On the design

and cloud-modelling applications of

libmpdata++

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

libmpdata++

free & open source C++ library of parallel MPDATA solvers

library
I leverage existing reusable software / let others reuse our code

I set of reusable components (solvers, output, concurrency)

I well-defined interface (documented in the paper)

key features
I variety of MPDATA based solvers in 1D, 2D & 3D

I rich set of options (MPDATA, boundary conditions, ...)

I shared-memory parallelisation using OpenMP or Boost.Thread

I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)

outline

On the design

and cloud-modelling applications of

libmpdata++

outline

On the design

and cloud-modelling applications of

libmpdata++

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility

︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability

︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I ease of use

I robustness

I result reproducibility︸ ︷︷ ︸
users’ perspective

I extendability

I maintainability︸ ︷︷ ︸
developers’ perspective

researcher = user & developer

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

Jaruga et al 2015
Geosci. Model Dev., 8, 1005–1032, 2015
www.geosci-model-dev.net/8/1005/2015/
doi:10.5194/gmd-8-1005-2015
© Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems
of generalised transport equations
A. Jaruga1, S. Arabas1, D. Jarecka1,2, H. Pawlowska1, P. K. Smolarkiewicz3, and M. Waruszewski1
1Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
2National Center for Atmospheric Research, Boulder, CO, USA
3European Centre for Medium-Range Weather Forecasts, Reading, UK

Correspondence to: A. Jaruga (ajaruga@igf.fuw.edu.pl) and H. Pawlowska (hanna.pawlowska@igf.fuw.edu.pl)

Received: 18 August 2014 – Published in Geosci. Model Dev. Discuss.: 26 November 2014
Revised: 2 March 2015 – Accepted: 3 March 2015 – Published: 8 April 2015

Abstract. This paper accompanies the f rst release of libmp-
data++, a C++ library implementing the multi-dimensional
positive-def nite advection transport algorithm (MPDATA)
on regular structured grid. The library offers basic nu-
merical solvers for systems of generalised transport equa-
tions. The solvers are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library covers the basic
second-order-accurate formulation of MPDATA, its third-
order variant, the inf nite-gauge option for variable-sign
f elds and a f ux-corrected transport extension to guarantee
non-oscillatory solutions. The library is equipped with a non-
symmetric variational elliptic solver for implicit evaluation
of pressure gradient terms. All solvers offer parallelisation
through domain decomposition using shared-memory paral-
lelisation.
The paper describes the library programming interface,

and serves as a user guide. Supported options are illus-
trated with benchmarks discussed in the MPDATA literature.
Benchmark descriptions include code snippets as well as
quantitative representations of simulation results. Examples
of applications include homogeneous transport in one, two
and three dimensions in Cartesian and spherical domains;
a shallow-water system compared with analytical solution
(originally derived for a 2-D case); and a buoyant convec-
tion problem in an incompressible Boussinesq f uid with in-
terfacial instability. All the examples are implemented out
of the library tree. Regardless of the differences in the prob-
lem dimensionality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the examples use the
same unmodif ed library, which is a key goal of libmpdata++
design. The design, based on the principle of separation of

concerns, prioritises the user and developer productivity. The
libmpdata++ library is implemented in C++, making use of
the Blitz++ multi-dimensional array containers, and is re-
leased as free/libre and open-source software.

1 Introduction

The MPDATA advection scheme introduced in Smo-
larkiewicz (1983) has grown into a family of numeri-
cal algorithms for geosciences and beyond (see for ex-
ample Grabowski and Smolarkiewicz, 2002; Cotter et al.,
2002; Smolarkiewicz and Szmelter, 2009; Ortiz and
Smolarkiewicz, 2009; Hyman et al., 2012; Charbonneau
and Smolarkiewicz, 2013). MPDATA stands for multi-
dimensional positive-def nite advection transport algorithm1.
It is a f nite-difference/f nite-volume algorithm for solving
the generalised transport equation

∂t(Gψ)+∇ · (Guψ) =GR. (1)

Equation (1) describes the advection of a scalar f eld ψ in
a f ow with velocity u. The f eld R on the right-hand side
(rhs) is a total of source/sink terms. The scalar f eld G can
represent the f uid density, the Jacobian of coordinate trans-
formation or their product and satisf es the equation

∂t(G)+∇ · (Gu) = 0. (2)

1In fact, MPDATA is sign-preserving, rather than merely
positive-def nite, but for historical reasons the name remains un-
changed.

Published by Copernicus Publications on behalf of the European Geosciences Union.

Geosci. Model Dev. policy (doi: 10.5194/gmd-6-1233-2013)

I “paper must be accompanied by the code, or means of accessing

the code, for the purpose of peer-review”

I “we strongly encourage referees to compile the code, and run test

cases supplied by the authors”

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

software design and researchers’ productivity

I documentation

I separation of user and library code (ease of updates)

I use of third-party libraries (Blitz++, Boost, OpenMP, HDF5)

I public code repository with history of changes

I automated builds and testing after changes

tests

Travis CI

10/17/2014 Travis CI - Free Hosted Continuous Integration Platform for the Open Source Community

https://travis-ci.org/igfuw/libmpdataxx/jobs/37758264 1/91

+

Search all repositories

My Repositories Recent

 igf uw/libmpdataxx

Duration: 48 min 50 sec

Finished: 4 days ago

42

 igf uw/shallow-water-elliptic-drop

Duration: 7 min 55 sec

Finished: 23 days ago

2

#42.1 passed

ran for 28 min 45 sec
4 days ago

igfuw/libmpdataxx

libmpdata++ - a library of parallel MPDATA-based solvers f or systems of generalised
transport equations

Current Build History Pull Requests Branch Summary Build #42

Job #42.1

master - f ixing tests/unit/shallow_water

buildbuild unknownunknown

slayoo authored and committed

Commit d219d3b #157: moving shallow_water solver from thests to the library tree;

libmpdata++-config.cmake

1 Using worker: worker-linux-4-2.bb.travis-ci.org:travis-linux-11
2
3 $ git clone --depth=50 1.29s

11 $ cd igfuw/libmpdataxx
12 $ git fetch origin +refs/pull/157/merge: 0.14s

19 $ git checkout -qf FETCH_HEAD
20 stop: Unknown instance:
21 $ export CXX=g++
22 $ export CC=gcc
23 $ gcc --version 0.01s

24 gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
25 Copyright (C) 2011 Free Software Foundation, Inc.

git.1

git.4
git.5

Home Blog Status Travis CI for Private RepositoriesHelp Maciej Waruszewski

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

example: 2D advection on a sphere

0.2

0.4

0.6

0.8

Scalars

0

1

I reproduced experiment of Williamson and Rasch, 1989

I <100 lines of code with libmpdata++

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

example: 2D Boussinesq convection

tht (t/dt=0)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=100)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=200)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=300)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=400)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=500)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=600)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=700)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=800)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=800)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

example: 2D Boussinesq convection

tht (t/dt=800)

0 50 100 150 200

x/dx

0

50

100

150

200

y/
d

y

299.99

300.10

300.20

300.30

300.40

300.50

300.60

I reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992

I <200 lines of code with libmpdata++
(using built-in elliptic pressure solver)

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

example: spreading drop of shallow water in 3D

5

0

5

t = 0 t = 1

5 0 5

5

0

5

t = 3

5 0 5

t = 7

I inspired by 2D experiment of Schär and Smolarkiewicz, 1996

I example and original analytic solution by Dorota Jarecka / NCAR
(paper Jarecka D., Jaruga A., Smolarkiewicz P.K. JCP 2015)

I <120 lines of code with libmpdata++

example: spreading drop of shallow water in 3D

5

0

5

t = 0 t = 1

5 0 5

5

0

5

t = 3

5 0 5

t = 7

I inspired by 2D experiment of Schär and Smolarkiewicz, 1996

I example and original analytic solution by Dorota Jarecka / NCAR
(paper Jarecka D., Jaruga A., Smolarkiewicz P.K. JCP 2015)

I <120 lines of code with libmpdata++

example: spreading drop of shallow water in 3D

5

0

5

t = 0 t = 1

5 0 5

5

0

5

t = 3

5 0 5

t = 7

I inspired by 2D experiment of Schär and Smolarkiewicz, 1996

I example and original analytic solution by Dorota Jarecka / NCAR
(paper Jarecka D., Jaruga A., Smolarkiewicz P.K. JCP 2015)

I <120 lines of code with libmpdata++

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

example: Taylor-Green vortex at Re = 800

I inspired by spectral calculations of Brachet et al., 1983

I <100 lines of code with libmpdata++

outline

On the design

and cloud-modelling applications of

libmpdata++

outline

On the design

and cloud-modelling applications of

libmpdata++

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver

user/test
code

subgrid model

user/test
code

+

+ +

+

+

∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

example: convective PBL

I setup following Margolin et al., 1999

I <250 lines of code with libmpdata++

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

ongoing work

I higher-order operators for subgrid-scale modelling

I distributed memory parallelisation (Boost.MPI)

I complex geometries using immersed boundary method

I extension to anelastic model

Thank you for your attention!

