Progress and Prospects of Lagrangian Particle-Based Cloud Modeling

S. Shima, W.W. Grabowski, S. Arabas, K.K. Chandrakar, P. Dziekan,

2024.12.12, Advances in Cloud and Precipitation Processes: Integrating Observations, Modeling, and Theory, AGU24

1. Lagrangian Particle-Based Method for Cloud Microphysics

It is an alternative to Eulerian bulk or bin methods

Aerosol/cloud/precipitation particles are represented by super-droplets or super-particles
See, e.g., Shima+('09,'20) for more details.

Particle-based schemes could resolve various issues of bin and bulk (Grabowski+'19)

In bulk models, only the statistical properties (mass, number, etc.) of the particle size distribution are calculated. Particle-based models are being used for various problems

Warm clouds: cumulus, cumulus congestus, fog,

Stratocumulus: Dziekan+'19, Hoffmann&Feingold'19, Dziekan+'21, Chandrakar+'22, Yin+'24

Marine cloud brightening: Hoffmann&Feingold'21, Kainz&Hoffmann'24 Aerosol processing and aqueous/surface chemistry

Hoppel gap: Jaruga&Pawlowska'18

Ice-/mixed-phase clouds

Cirrus and contrail: Sölch&Kärcher'10, Unterstrasser&Sölch'10, ..., Unterstrasser+'17, and many

Model for mixed phase clouds and habit (ice shape) prediction:

McSnow: Brdar&Seifert'18, Welss+'24; PALM-LCM: Hoffmann'20; SCALE-SDM: Shima+'20; CM1-SDM: Chandrakar+'24

Supersaturation fluctuation by SGS turbulence

By adding 4 new attributes (S', U', V', W') (Grabowski&Abade'17, Abade+'18) By introducing Linear Eddy Model (Hoffman+'18) 3/10 2. Application to Mixed-Phase Clouds and Habit Prediction

Approach of Shima+'20

0

Λz

Porous spheroid approximation

(e.g., Chen&Lamb'94, Jensen&Harrington'15)

+ apparent + rime mass, density ρ number of \checkmark monomers Ice nuclei is represented by freezing temperature attribute, based on INAS theory

Can account for homogeneous, and condensation/immersion freezing

Cb simulation with SCALE-SDM

Improved habit prediction model (Welss+'24)

Inherent growth ratio function of Chen&Lamb'94 is renewedReexamination of Böhm's theory ('89,'92abc,'94,'99,'04) for terminal velocity and collision

Habit dependent ventilation model

New crystal growth model and cirrus (Chandrakar+'24)

> A new depositional growth model based on lab experiments (Harrington+'19 and Pokrifka+ '23) was implemented to CM1-SDM

They found that the particle variability in cirrus is primarily driven by their thermodynamic histories

3. Model Developments

Collisional breakup of droplets

SD number remain unchanged through coalescence (Shima+'09)

Collisional breakup poses a computational challenge

Bringi+'20's algorithm requires SD merging.

De Jong+'23 developed an algorithm that conserves the SD number, and implemented it to PySDM

Development of efficient algorithms for other breakup processes is important, such as ice-ice collisional breakup, rime splintering, shedding, shattering of freezing droplets.

Performance optimization

Matsushima+'23 achieved **61.3 times speed-up** by improving the algorithm and optimizing the code. (Available only in his version.)

The elapsed time is comparable to a two-moment bulk scheme.

Numerical weather forecast with particle-based model would be feasible?

CPU + GPU + MPI

Dziekan&Zmijewski'22 explored the performance of UWLCM.

Lagrangian and Eulerian calculations can be parallelized efficiently on GPU and CPU.

On 40 nodes, the wall time of CPU+GPU particle-based was twice that of CPU-only bulk.

Machine learning

Particle-based models can provide training data for machine learning (e.g., Seifert&Rasp'20, Sharma&Greenberg'24, Azimi+'24) Seifert&Siewert'24 developed MLbased two-moment ice microphysics

by learning 55 process rates using McSnow as reference

4. Model Validations

Pi chamber model intercomparison

Moist turbulent chamber in Michigan Tech

ICMW2020 case for warm phase (Chen+'24); 2024 case for mixed phase

Qualitative agreement with lab experiment

Further study is needed to understand the remaining discrepancy

Warm, humid bottom wall

Evaluation of coalescence algorithms in 3D

Morrison+'24 tested several coalescence algorithms for particle-based models in 3D LES of a cumulus congestus

SDM Monte-Carlo algorithm of Shima+'09 worked efficiently (good convergence at 256SDs/cell)

They uncovered the reason why some deterministic algorithms perform poorly

Flow variability due to turbulence is much larger than the stochasticity of the SDM algorithm (see also Zmijewski+'24)

5. Conclusions

Key messages

Lagrangian particle-based cloud models can seamlessly connect aerosol scale and cloud scale from the process level.

They serve as a unique tool to bridge the gaps between observations, modeling, lab studies, and theory.

Open source software

McSnow: <u>https://gitlab.dkrz.de/mcsnow/mcsnow</u>

PySDM: <u>https://github.com/open-atmos/PySDM</u>

SCALE-SDM: <u>https://github.com/Shima-Lab</u>

UWLCM: https://github.com/igfuw/UWLCM

GMD/ACP special issue

https://gmd.copernicus.org/articles/sp ecial_issue1164.html

