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example: VOCALS-inspired aerosol processing set-up

I 2D prescribed flow

I advection: MPDATA
(2-pass FCT)

I µ-physics: Super
Droplets

single-eddy velocity field
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free & open-source C++ libraries developed at our group

libmpdata++ / arXiv:1407.1309 / under review in GMDD

libmpdata++ 0.1: a library of parallel MPDATA solvers

for systems of generalised transport equations

Anna Jaruga1, Sylwester Arabas1, Dorota Jarecka1,2, Hanna Pawlowska1, Piotr K. Smolarkiewicz∗3,
and Maciej Waruszewski1

1Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
2National Center for Atmospheric Research, Boulder, Colorado, USA

3European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

This paper accompanies first release of libm-
pdata++, a C++ library implementing the
Multidimensional Positive-Definite Advection
Transport Algorithm (MPDATA). The library
o↵ers basic numerical solvers for systems of
generalised transport equations. The solvers
are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library cov-
ers the basic second-order-accurate formula-
tion of MPDATA, its third-order variant, the
infinite-gauge option for variable-sign fields
and a flux-corrected transport extension to
guarantee non-oscillatory solutions. The li-
brary is equipped with a non-symmetric vari-
ational elliptic solver for implicit evaluation of
pressure gradient terms. All solvers o↵er par-
allelisation through domain decomposition us-
ing shared-memory parallelisation.

The paper describes the library program-
ming interface, and serves as a user guide.
Supported options are illustrated with bench-
marks discussed in the MPDATA literature.
Benchmark descriptions include code snippets
as well as quantitative representations of sim-
ulation results. Examples of applications in-
clude: homogeneous transport in one, two and
three dimensions in Cartesian and spherical
domains; shallow-water system compared with
analytical solution (originally derived for a 2D
case); and a buoyant convection problem in
an incompressible Boussinesq fluid with inter-
facial instability. All the examples are imple-
mented out of the library tree. Regardless
of the di↵erences in the problem dimension-
ality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the ex-
amples use the same unmodified library, which
is a key goal of libmpdata++ design. The de-
sign, based on the principle of separation of
concerns, prioritises the user and developer
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productivity. The libmpdata++ library is im-
plemented in C++, making use of the Blitz++
multi-dimensional array containers, and is re-
leased as free/libre and open-source software.
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Abstract

This paper introduces a library of algo-
rithms for representing cloud microphysics in
numerical models. The library is written in
C++, hence the name libcloudph++. In the
current release, the library covers three warm-
rain schemes: the single- and double-moment
bulk schemes, and the particle-based scheme
with Monte-Carlo coalescence. The three
schemes are intended for modelling frame-
works of di↵erent dimensionality and com-
plexity ranging from parcel models to multi-
dimensional cloud-resolving (e.g. large-eddy)
simulations. A two-dimensional prescribed-
flow framework is used in example simula-
tions presented in the paper with the aim
of highlighting the library features. The lib-

cloudph++ and all its mandatory dependen-
cies are free and open-source software. The
Boost.units library is used for zero-overhead
dimensional analysis of the code at compile
time. The particle-based scheme is imple-
mented using the Thrust library that allows
to leverage the power of graphics processing
units (GPU), retaining the possibility to com-
pile the unchanged code for execution on single
or multiple standard processors (CPUs). The
paper includes complete description of the pro-
gramming interface (API) of the library and a
performance analysis including comparison of
GPU and CPU setups.
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1 Introduction

Representation of cloud processes in numerical
models is crucial for weather and climate predic-
tion. Taking climate modelling as an example, one
may learn that numerous distinct modelling sys-
tems are designed in similar ways, sharing not only
the concepts but also the implementations of some
of their components (Pennell and Reichler, 2010).
This creates a perfect opportunity for code reuse
which is one of the key ”best practices” for scientific
computing (Wilson et al., 2014, sec. 6). The real-
ity, however, is that the code to be shared is often
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Abstract

This paper accompanies first release of libm-
pdata++, a C++ library implementing the
Multidimensional Positive-Definite Advection
Transport Algorithm (MPDATA). The library
o↵ers basic numerical solvers for systems of
generalised transport equations. The solvers
are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library cov-
ers the basic second-order-accurate formula-
tion of MPDATA, its third-order variant, the
infinite-gauge option for variable-sign fields
and a flux-corrected transport extension to
guarantee non-oscillatory solutions. The li-
brary is equipped with a non-symmetric vari-
ational elliptic solver for implicit evaluation of
pressure gradient terms. All solvers o↵er par-
allelisation through domain decomposition us-
ing shared-memory parallelisation.

The paper describes the library program-
ming interface, and serves as a user guide.
Supported options are illustrated with bench-
marks discussed in the MPDATA literature.
Benchmark descriptions include code snippets
as well as quantitative representations of sim-
ulation results. Examples of applications in-
clude: homogeneous transport in one, two and
three dimensions in Cartesian and spherical
domains; shallow-water system compared with
analytical solution (originally derived for a 2D
case); and a buoyant convection problem in
an incompressible Boussinesq fluid with inter-
facial instability. All the examples are imple-
mented out of the library tree. Regardless
of the di↵erences in the problem dimension-
ality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the ex-
amples use the same unmodified library, which
is a key goal of libmpdata++ design. The de-
sign, based on the principle of separation of
concerns, prioritises the user and developer

∗
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productivity. The libmpdata++ library is im-
plemented in C++, making use of the Blitz++
multi-dimensional array containers, and is re-
leased as free/libre and open-source software.
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Abstract

This paper introduces a library of algo-
rithms for representing cloud microphysics in
numerical models. The library is written in
C++, hence the name libcloudph++. In the
current release, the library covers three warm-
rain schemes: the single- and double-moment
bulk schemes, and the particle-based scheme
with Monte-Carlo coalescence. The three
schemes are intended for modelling frame-
works of di↵erent dimensionality and com-
plexity ranging from parcel models to multi-
dimensional cloud-resolving (e.g. large-eddy)
simulations. A two-dimensional prescribed-
flow framework is used in example simula-
tions presented in the paper with the aim
of highlighting the library features. The lib-

cloudph++ and all its mandatory dependen-
cies are free and open-source software. The
Boost.units library is used for zero-overhead
dimensional analysis of the code at compile
time. The particle-based scheme is imple-
mented using the Thrust library that allows
to leverage the power of graphics processing
units (GPU), retaining the possibility to com-
pile the unchanged code for execution on single
or multiple standard processors (CPUs). The
paper includes complete description of the pro-
gramming interface (API) of the library and a
performance analysis including comparison of
GPU and CPU setups.
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1 Introduction

Representation of cloud processes in numerical
models is crucial for weather and climate predic-
tion. Taking climate modelling as an example, one
may learn that numerous distinct modelling sys-
tems are designed in similar ways, sharing not only
the concepts but also the implementations of some
of their components (Pennell and Reichler, 2010).
This creates a perfect opportunity for code reuse
which is one of the key ”best practices” for scientific
computing (Wilson et al., 2014, sec. 6). The real-
ity, however, is that the code to be shared is often
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Abstract

This paper accompanies first release of libm-
pdata++, a C++ library implementing the
Multidimensional Positive-Definite Advection
Transport Algorithm (MPDATA). The library
o↵ers basic numerical solvers for systems of
generalised transport equations. The solvers
are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library cov-
ers the basic second-order-accurate formula-
tion of MPDATA, its third-order variant, the
infinite-gauge option for variable-sign fields
and a flux-corrected transport extension to
guarantee non-oscillatory solutions. The li-
brary is equipped with a non-symmetric vari-
ational elliptic solver for implicit evaluation of
pressure gradient terms. All solvers o↵er par-
allelisation through domain decomposition us-
ing shared-memory parallelisation.

The paper describes the library program-
ming interface, and serves as a user guide.
Supported options are illustrated with bench-
marks discussed in the MPDATA literature.
Benchmark descriptions include code snippets
as well as quantitative representations of sim-
ulation results. Examples of applications in-
clude: homogeneous transport in one, two and
three dimensions in Cartesian and spherical
domains; shallow-water system compared with
analytical solution (originally derived for a 2D
case); and a buoyant convection problem in
an incompressible Boussinesq fluid with inter-
facial instability. All the examples are imple-
mented out of the library tree. Regardless
of the di↵erences in the problem dimension-
ality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the ex-
amples use the same unmodified library, which
is a key goal of libmpdata++ design. The de-
sign, based on the principle of separation of
concerns, prioritises the user and developer
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productivity. The libmpdata++ library is im-
plemented in C++, making use of the Blitz++
multi-dimensional array containers, and is re-
leased as free/libre and open-source software.
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Abstract

This paper introduces a library of algo-
rithms for representing cloud microphysics in
numerical models. The library is written in
C++, hence the name libcloudph++. In the
current release, the library covers three warm-
rain schemes: the single- and double-moment
bulk schemes, and the particle-based scheme
with Monte-Carlo coalescence. The three
schemes are intended for modelling frame-
works of di↵erent dimensionality and com-
plexity ranging from parcel models to multi-
dimensional cloud-resolving (e.g. large-eddy)
simulations. A two-dimensional prescribed-
flow framework is used in example simula-
tions presented in the paper with the aim
of highlighting the library features. The lib-

cloudph++ and all its mandatory dependen-
cies are free and open-source software. The
Boost.units library is used for zero-overhead
dimensional analysis of the code at compile
time. The particle-based scheme is imple-
mented using the Thrust library that allows
to leverage the power of graphics processing
units (GPU), retaining the possibility to com-
pile the unchanged code for execution on single
or multiple standard processors (CPUs). The
paper includes complete description of the pro-
gramming interface (API) of the library and a
performance analysis including comparison of
GPU and CPU setups.
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1 Introduction

Representation of cloud processes in numerical
models is crucial for weather and climate predic-
tion. Taking climate modelling as an example, one
may learn that numerous distinct modelling sys-
tems are designed in similar ways, sharing not only
the concepts but also the implementations of some
of their components (Pennell and Reichler, 2010).
This creates a perfect opportunity for code reuse
which is one of the key ”best practices” for scientific
computing (Wilson et al., 2014, sec. 6). The real-
ity, however, is that the code to be shared is often
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I built-in HDF5/XDMF output

I implemented using Blitz++ (no loops, expression templates)

I compact C++11 code (< 10 kLOC)
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building blocks of libmpdata++

homogeneous advection

user/test
code

source terms

user/test
code

prognosed velocity

user/test
code

shallow water eqs

user/test
code

pressure solver
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∂t(Gψ) +∇ · (G~uψ) = 0

∂t(Gψ) +∇ · (G~uψ) = GRψ

∂t(G~u) +∇ · (G~u ⊗ ~u) = G ~Ru

L(φ) = Rφ
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algorithm option as a compile-time parameter

// compile-time parameters
struct ct_params_t
  : libmpdataxx::ct_params_default_t
{
  using real_t = double;
  enum { n_dims = 1 };
  enum { n_eqns = 2 };
  enum { opts = opts::abs };
};

// solver choice
using slv_t = solvers::mpdata<ct_params_t>;
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Travis CI

10/17/2014 Travis CI - Free Hosted Continuous Integration Platform for the Open Source Community

https://travis-ci.org/igfuw/libmpdataxx/jobs/37758264 1/91

+

Search all repositories

My Repositories  Recent

 igf uw/libmpdataxx

Duration: 48 min 50 sec

Finished: 4 days ago

42

 igf uw/shallow-water-elliptic-drop

Duration: 7 min 55 sec

Finished: 23 days ago

2

 

#42.1 passed

ran for 28 min 45 sec
4 days ago

 

igfuw/libmpdataxx  

libmpdata++ - a library of  parallel MPDATA-based solvers f or systems of  generalised
transport equations

Current  Build History  Pull Requests  Branch Summary  Build #42

Job #42.1

master - f ixing tests/unit/shallow_water

      

buildbuild unknownunknown

slayoo authored and committed

Commit d219d3b #157: moving shallow_water solver from thests to the library tree;

libmpdata++-config.cmake

1 Using worker: worker-linux-4-2.bb.travis-ci.org:travis-linux-11
2
3 $ git clone --depth=50 1.29s

11 $ cd igfuw/libmpdataxx
12 $ git fetch origin +refs/pull/157/merge: 0.14s

19 $ git checkout -qf FETCH_HEAD
20 stop: Unknown instance: 
21 $ export CXX=g++
22 $ export CC=gcc
23 $ gcc --version 0.01s

24 gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3
25 Copyright (C) 2011 Free Software Foundation, Inc.

git.1

git.4
git.5

Home  Blog  Status   Travis CI for Private RepositoriesHelp Maciej Waruszewski
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Thank you for your attention!

I postdoc position at our group: http://foss.igf.fuw.edu.pl/

I libmpdata++ paper: http://arxiv.org/abs/1407.1309

I libcloudph++ paper: http://arxiv.org/abs/1310.1905

I code repositories: http://github.com/igfuw/
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