What's new in libmpdata++ (towards the 2.0 release)

Sylwester Arabas
Faculty of Physics, University of Warsaw, Poland

seminar presented at the Graduate School for Computational Studies, Hyogo University

Kōbe, Japan, September 7, 2015

let me introduce myself

	0.04	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

- 2010: first contact thanks to Enomoto-san
 - 2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project
- 2013: Arabas & Shima paper in J. Atmos. Sci.
- 2014: 1 week at Hyogo Univ., our group starts using rokko complete.
- 2011-2015: >10 related posters & talks \leadsto super-droplet advocate

	oot	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks → super-droplet advocate

	224	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci.

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks \rightsquigarrow super-droplet advocate

	0.04	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci.

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks \rightsquigarrow super-droplet advocate

	0.04	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci.

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks \rightsquigarrow super-droplet advocate

	0.04	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci.

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks \(\sigma\) super-droplet advocate

	ost	staff	students	
	est.		BSc/MSc	PhD
University of Warsaw	1816	6000	55000	3000
Faculty of Physics	1816	300	1000	150
Institute of Geophysics	1948	30	20	20
Atmospheric Physics Division	1949	10	10	10

collaboration with Shima-san

2010: first contact thanks to Enomoto-san

2010: 4 weeks at JAMSTEC/Yokohama: RICO-SDM project

2013: Arabas & Shima paper in J. Atmos. Sci.

2014: 1 week at Hyogo Univ., our group starts using rokko comp.

2011-2015: >10 related posters & talks → super-droplet advocate

2015 super-droplet workshop at the University of Warsaw

let me introduce our team

@ NCAR. Boulder. Colorado. USA

prof. Wojciech Grabowsk

Dorota Jarecka

@ NCAR, Boulder, Colorado, USA

prof. Wojciech Grabowski

Dorota Jarecka

@ NCAR, Boulder, Colorado, USA

prof. Wojciech Grabowski

Jaruga

Dorota Jarecka

Pawowska

Dziekan

@ NCAR, Boulder, Colorado, USA

Zimniak

prof. Wojciech Grabowski

Jaruga

Dorota Jarecka

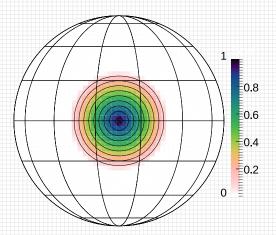
@ ECMWF, Reading, UK

Arabas

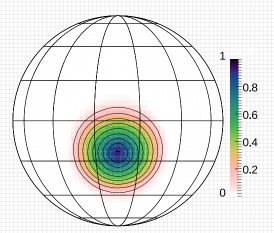
Waruszewski

prof. Piotr Smolarkiewicz

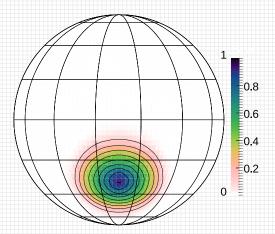
Plan of the talk

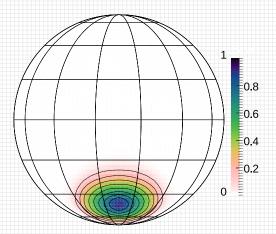

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

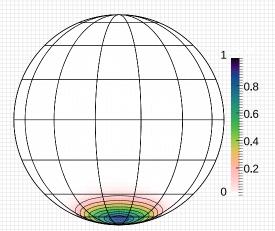
Plan of the talk

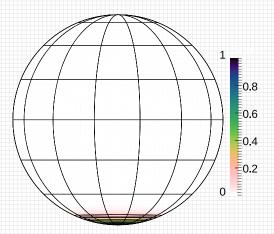

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

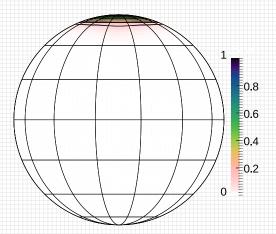
$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

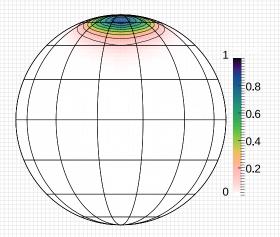

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

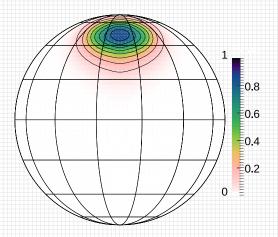

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

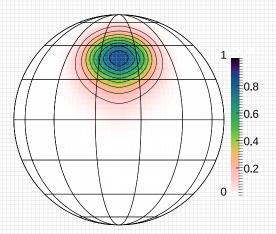

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

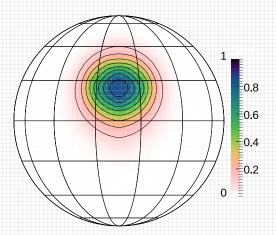

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

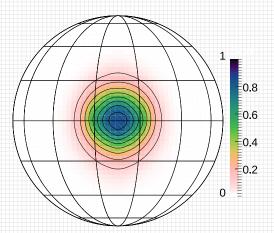

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

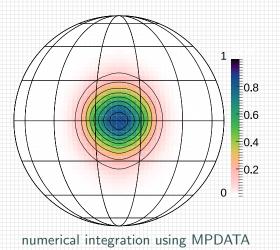

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$


$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$


$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$


$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$


$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$


$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = GR$$

MPDATA (father: Piotr Smolarkiewicz)

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: ~ 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
 - e-mail distribution, copy-paste-modify reuse
 - no unit/regression tests

libmpdata++: a new C++11 / Blitz++ based implementation

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: ~ 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - lacktriangle Google Scholar: \sim 700 research papers
 - lacksquare Google Books: \sim 200 mentions in books

original single-file Fortran 77 implementation used till today

■ no unit/regression tests

libmpdata++: a new C++11 / Blitz++ based implementation

an over order-of-magnitude lower number of lines of code

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
 - comparable performance
 - = major improvement in rousehility and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - lacktriangle Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

- a family of robust schemes for solving transport problems
 - the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
 - Google Scholar: \sim 700 research papers
 - Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

Multi-dimensional Positive-Definite Advection Transport Algorithm

a family of robust schemes for solving transport problems

- the seminal MPDATA article (Smolarkiewicz, 1984): >600 citations
- Google Scholar: \sim 700 research papers
- Google Books: ~ 200 mentions in books

original single-file Fortran 77 implementation used till today

- unspecified license, no versioning
- e-mail distribution, copy-paste-modify reuse
- no unit/regression tests

- an over order-of-magnitude lower number of lines of code
- comparable performance
- major improvement in reusability and maintainability

researcher = user

- **■** ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - → multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- = asso of extending
 - --- concise OOP syntax, separation of concerns, free/libre/open code
 - automated tests, continuous integration

libmpdata++: aims & design patterns

priority: researchers' productivity

researcher = user

- ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - → multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- ease of extending
- concise OOP syntax, separation of concerns, free/libre/open code automated tests, continuous integration

libmpdata++: aims & design patterns

priority: researchers' productivity

researcher = user

- ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - → multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- m ease of extending
- → concise OOP syntax, separation of concerns, free/libre/open code

 automated tests continuous interration.

researcher = user

- ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - → multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- ease of extending
 - concise OOP syntax, separation of concerns, free/libre/open code automated tests, continuous integration

<u>rese</u>archer = user

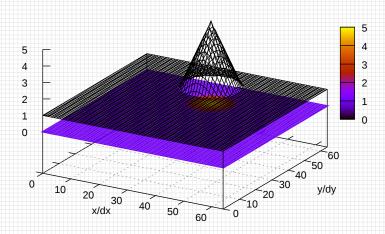
- ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - --> multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- ease of extending
 - concise OOP syntax, separation of concerns, free/libre/open code automated tests, continuous integration

researcher = user

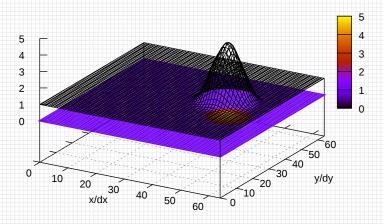
- ease of obtaining and using
 - → public repository, documentation, examples, free/libre/open code
- result correctness
 - → multifaceted peer-reviewed automated tests, free/libre/open code
- result reproducibility
 - → atomic versions, no legal nor tech. obstacles, free/libre/open code

- ease of extending
 - → concise OOP syntax, separation of concerns, free/libre/open code automated tests, continuous integration

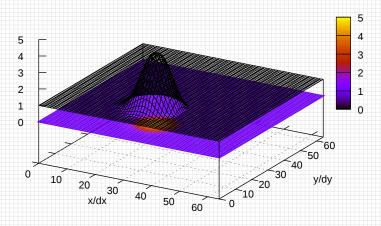

Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

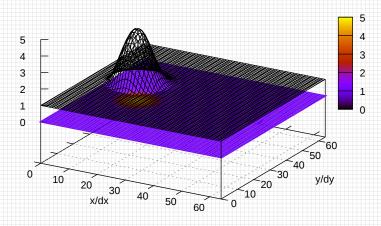
Plan of the talk


- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata + + 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

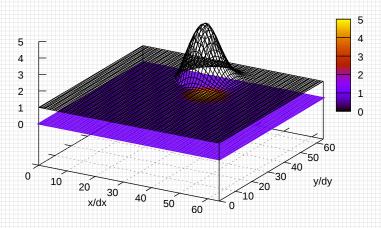
64 LOC using libmpdata++


(t/dt=157)

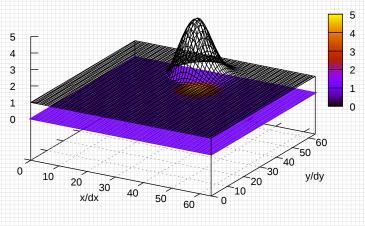
64 LOC using libmpdata + 1


(t/dt=314)

64 LOC using libmpdata + 1



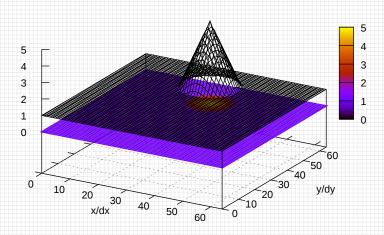
(t/dt=471)


64 LOC using libmpdata++

(t/dt=628)

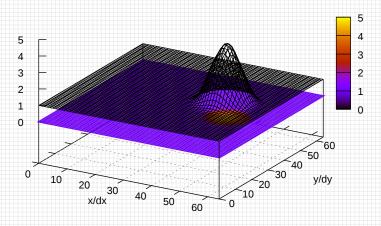
64 LOC using libmpdata + +

(t/dt=628)

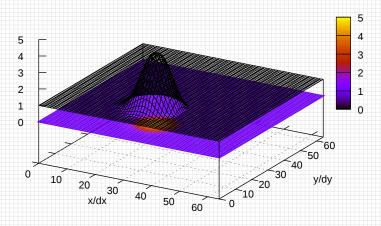

64 LOC using libmpdata++

```
1 #include <libmpdata++/solvers/mpdata.hpp>
   2 #include <libmpdata++/concurr/serial.hpp>
   3 #include <libmpdata++/output/gnuplot.hpp>
   5 int main()
   6 {
               namespace lmpdt = libmpdataxx;
   8
               const int nx=64, ny=64, nt = 628;
10
               // compile-time parameters
11
               struct ct params t : lmpdt::ct params default t
12
13
                     using real t = double:
14
                     enum \{ n \text{ dims} = 2 \}:
15
                     enum { n eans = 1 };
16
17
18
               // solver choice
19
               using run t = lmpdt::output::gnuplot< lmpdt::solvers::mpdata< ct params t >>;
20
21
               // runtime parameters
22
                typename run t::rt params t p;
23
                p.grid size = \{nx+1, ny+1\};
24
                p.outfreq = nt/4:
25
                p.gnuplot output = "out %s %d.svg";
26
                p.anuplot with = "lines":
27
                p.qnuplot cbrange = p.qnuplot zrange = "[0:5]":
28
29
               // sharedmem concurency and boundary condition choice
               lmpdt::concurr::serial<</pre>
30
31
                     run t,
32
                      lmpdt::bcond::open, lmpdt::bcond::open, // x-left, x-right
33
                      lmpdt::bcond::open, lmpdt::bcond::open // v-left, v-right
34
               > run(p):
                                                                                                                                                                            *ロ * (日 * (日 * * ) * (日 *
```

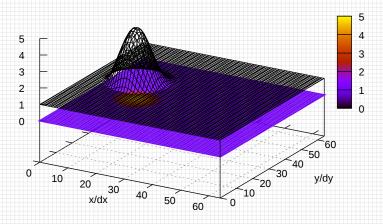
```
36
37
     // initial condition
38
       using namespace blitz::tensor;
39
       auto psi = run.advectee();
40
41
       const double
42
         dt = .1, dx = 1, dv = 1, omega = .1,
43
         h = 4...h0 = 1...r = .15 * nx * dx.
44
45
         x0 = .5 * nx * dx. v0 = .75 * nv * dv.
         xc = .5 * nx * dx, yc = .50 * ny * dy;
46
47
       // cone shape cut at h0
48
       psi = blitz::pow(i * dx - x0, 2) +
49
50
             blitz::pow(j * dy - y0, 2);
51
       psi = h0 + where(
52
         psi - pow(r, 2) \le 0.
                                                // if
53
         h - blitz::sqrt(psi / pow(r/h,2)), // then
54
55
56
         Θ.
                                                // else
57
       // constant-angular-velocity rotational field
58
       run.advector(0) = omega * (i * dy - yc) * dt/dx;
59
       run.advector(\mathbf{1}) = -omega * (i * dx - xc) * dt/dy;
60
61
62
     // time stepping
63
     run.advance(nt):
64 }
```


```
36
     // initial condition
37
38
       using namespace blitz::tensor;
39
       auto psi = run.advectee();
40
41
       const double
42
         dt = .1, dx = 1, dv = 1, omega = .1,
43
         h = 4., h0 = 1, r = .15 * nx * dx,
44
         x0 = .5 * nx * dx. v0 = .75 * nv * dv.
45
         xc = .5 * nx * dx, yc = .50 * ny * dy;
46
47
       // cone shape cut at h0
48
       psi = blitz::pow(i * dx - x0, 2) +
49
50
             blitz::pow(j * dy - y0, 2);
51
       psi = h0 + where(
52
         psi - pow(r, 2) \le 0.
                                                 // if
53
         h - blitz::sqrt(psi / pow(r/h,2)), // then
54
55
56
         Θ.
                                                 // else
57
       // constant-angular-velocity rotational field
58
       run.advector(0) = omega * (i * dy - yc) * dt/dx;
59
       run.advector(1) = -omega * (i * dx - xc) * dt/dy;
60
61
                          CMakeLists.txt
62
     // time stepping
                            1 cmake minimum required(VERSION 3.0)
63
     run.advance(nt):
                            2 project(hello world CXX)
64 }
                            3 find package(libmpdata++)
                            4 set(CMAKE CXX FLAGS ${libmpdataxx CXX FLAGS RELEASE})
                            5 add executable(hello world hello world.cpp)
                            6 target link libraries(hello world ${libmpdataxx LIBRARIES})
```


64 LOC using libmpdata + 1

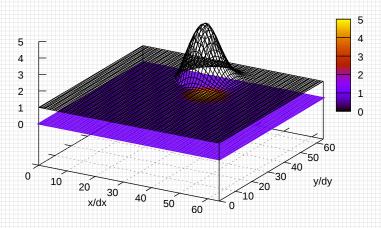

(t/dt=157)

64 LOC using libmpdata++

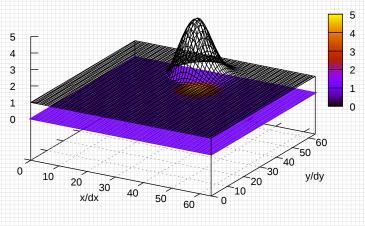


(t/dt=314)

64 LOC using libmpdata + 1


(t/dt=471)

64 LOC using libmpdata + 1



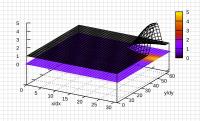
(t/dt=628)

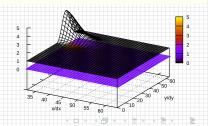
64 LOC using libmpdata + +

(t/dt=628)

64 LOC using libmpdata++

with multi-threading → also 64 LOC!


```
2c2
< #include <libmpdata++/concurr/serial.hpp>
---
> #include <libmpdata++/concurr/threads.hpp>
30c30
< lmpdt::concurr::serial<
---
> lmpdt::concurr::threads
```


```
$ top
...
PID USER PR NI S %CPU %MEM nTH TIME+ COMMAND
21031 slayoo 20 0 R 73.7 0.1 4 0:01.68 hello_worl 90%
...
```

MPI + threads → also 64 LOC!!! (recompilation only)

```
$ cmake . -DCMAKE_CXX_COMPILER=mpic++
$ make
$ OMP_NUM_THREADS=2 mpirun -np 2 ./hello_world
```

```
$ top
 PID USER
             PR.
                     S %CPU %MEM nTH
                                         TIME+ COMMAND
19640 slayoo
             20
                 O R 65.5
                             0.3
                                                         98%
                                      0:00.92 hello_worl
19641 slayoo
              20
                    R 64.0 0.3 2
                                       0:00.91 hello worl
                                                          99%
```


Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

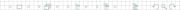
- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MFDATA options implemented

- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- m source term handling
- shallow-water and Boussineso dynamic

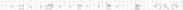
- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented

- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source-term handling
- shallow-water and Boussinese dynamic

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source term handling
- shallow-water and Boussineso dynamic


- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source-term handling
- shallow-water and Boussiness dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source-term handling
- shallow-water and Boussinese dynamics


- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source-term handling
- shallow-water and Boussineso dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary conditions
- source-term handling
- shallow-water and Boussineso dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary condition
- source term handling
- shallow-water and Boussinesd dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary conditions
- source-term handling
- shallow-water and Boussinese dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary conditions
- source-term handling
- shallow-water and Boussinese dynamics

- support for integration in 1D, 2D & 3D
- support for multiple transported fields
- numerous MPDATA options implemented:
 - arbitrary number of corrective iterations
 - Flux-Corrected Transport (FCT, non-oscillatory) option
 - infinite-gauge variant (for sing-changing fields)
 - third-order terms
- coordinate transformations
- open, cyclic, polar & rigid boundary conditions
- source-term handling
- shallow-water and Boussinesq dynamics

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

Geosci, Model Dev. policy (doi: 10.5194/gmd-6-1233-2013)

paper must be accompanied by the code, or means or accessing the code, for the purpose of peer-review"
 "we strongly encourage referees to compile the code, and run test

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

- "paper must be accompanied by the code, or means of accessing the code, for the purpose of peer-review"
- "we strongly encourage referees to compile the code, and run test cases supplied by the authors"

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

- "paper must be accompanied by the code, or means of accessing the code, for the purpose of peer-review"
- "we strongly encourage referees to compile the code, and run test cases supplied by the authors"

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005–1032, 2015 www.geosci-model-dev.net/8/1005/2015/ doi:10.5194/gmd-8-1005-2015 © Author(s) 2015. CC Attribution 3.0 License.

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga¹, S. Arabas¹, D. Jarecka^{1,2}, H. Pawlowska¹, P. K. Smolarkiewicz³, and M. Waruszewski¹

- "paper must be accompanied by the code, or means of accessing the code, for the purpose of peer-review"
- "we strongly encourage referees to compile the code, and run test cases supplied by the authors"

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

²National Center for Atmospheric Research, Boulder, CO, USA

³European Centre for Medium-Range Weather Forecasts, Reading, UK

A. Jaruga et al.: libmpdata++: MPDATA solver library in C++

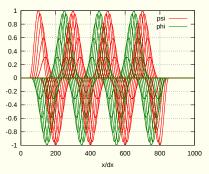
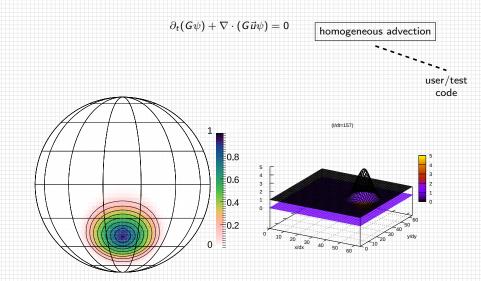
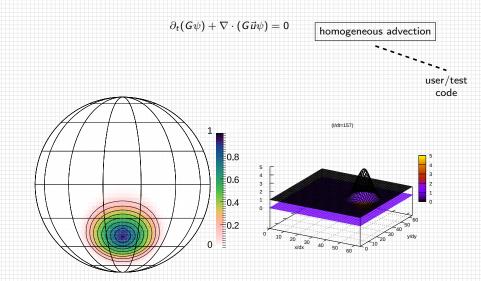
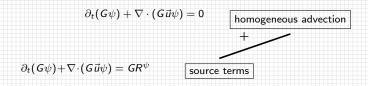


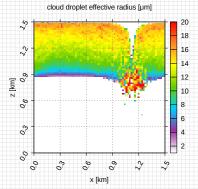
Figure 15. Simulation results of the example presented in Sect. 4.3. Abscissa marks the spatial dimension and ordinate represents the oscillator amplitude. The oscillator state is plotted every 20 time steps.

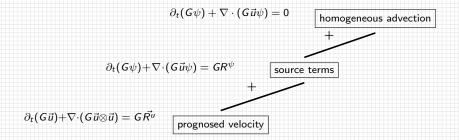
(partial differential equation) system (16) leads to the following system of coupled implicit algebraic equations:

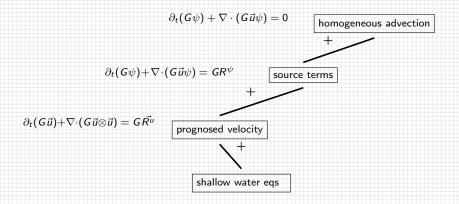

$$\psi_i^{n+1} = \psi_i^* + 0.5 \ \Delta t \ \omega \ \phi_i^{n+1},$$

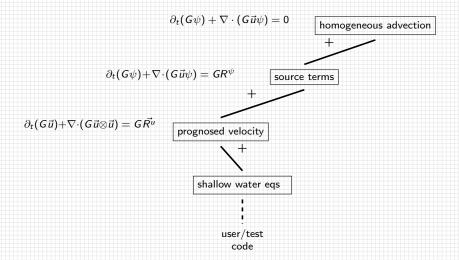

$$\phi_i^{n+1} = \phi_i^* - 0.5 \ \Delta t \ \omega \ \psi_i^{n+1},$$
(17)

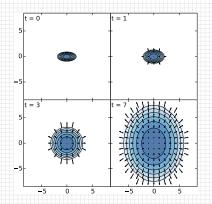

```
#include <libmpdata++/solvers/mpdata_rhs.hpp>
template <class ct_params_t>
struct coupled_harmosc : public
 libmpdataxx::solvers::mpdata_rhs<ct_params_t>
{ // aliases
 using parent t =
   libmpdataxx::solvers::mpdata_rhs<ct_params_t>;
 using ix = typename ct_params_t::ix;
 // member fields
 typename ct_params_t::real_t omega;
 // method called by mpdata_rhs
 void update rhs(
   libmpdataxx::arrvec_t<
      typename parent_t::arr_t
   > &rhs.
   const typename parent_t::real_t &dt,
    const int &at
   parent_t::update_rhs(rhs, dt, at);
    // just to shorten code
   const auto &psi = this->state(ix::psi);
   const auto &phi = this->state(ix::phi);
    const auto &i = this->i;
    switch (at)
   { // explicit solution for R^{n}
     // (note: with trapez used only at t=0)
      case (0):
     rhs.at(ix::psi)(i) += omega * phi(i);
     rhs.at(ix::phi)(i) -= omega * psi(i);
```

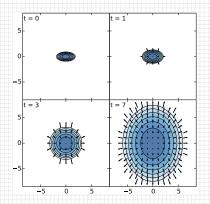

$$\partial_t(G\psi) + \nabla \cdot (G\vec{u}\psi) = 0$$


homogeneous advection

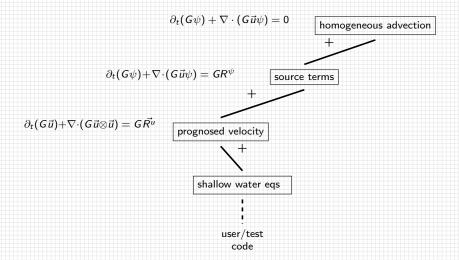


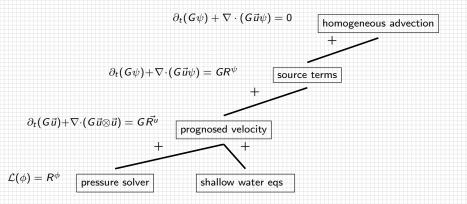


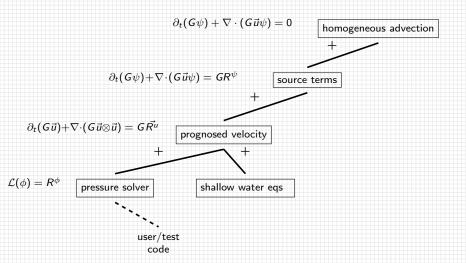


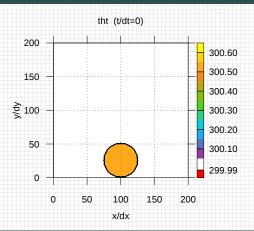


libmpdata++: 3D shallow-water system example

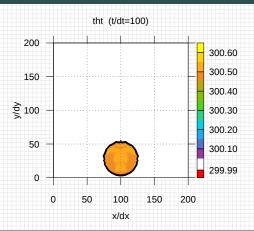



- inspired by 2D experiment of Schär and Smolarkiewicz, 1996
- example and original analytic solution by Dorota Jarecka / NCAR (Jarecka, Jaruga & Smolarkiewicz 2015, J. Comp. Phys. 289)


libmpdata++: 3D shallow-water system example


- inspired by 2D experiment of Schär and Smolarkiewicz, 1996
- example and original analytic solution by Dorota Jarecka / NCAR (Jarecka, Jaruga & Smolarkiewicz 2015, J. Comp. Phys. 289)

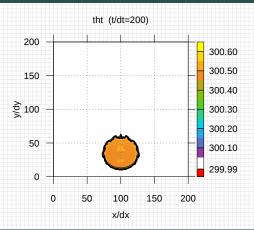
libmpdata++: 2D Boussinesq convection example



- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

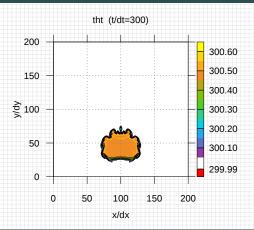
https://github.com/igfuw/libmpdataxx/tree/master/tests/paper_2015_GMD/8_boussinesq_2d

libmpdata++: 2D Boussinesq convection example

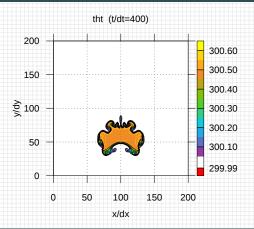


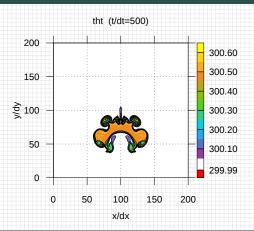
- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

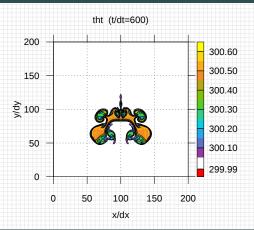
https://github.com/igfuw/libmpdataxx/tree/master/tests/paper_2015_GMD/8_boussinesq_2d

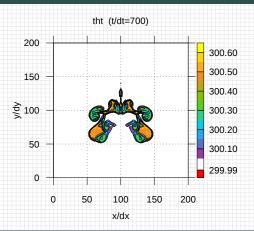

libmpdata++: 2D Boussinesq convection example

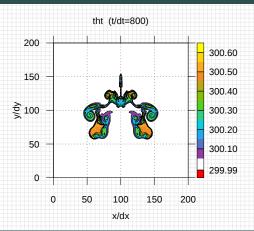
- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

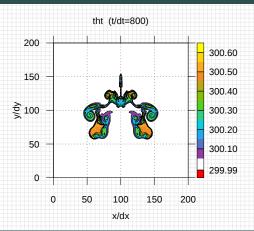

https://github.com/igfuw/libmpdataxx/tree/master/tests/paper_2015_GMD/8_boussinesq_2d

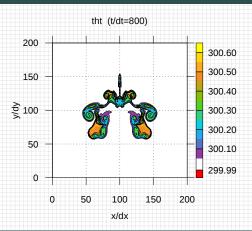

- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

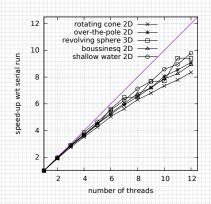

- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

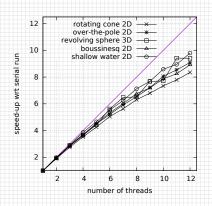

- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

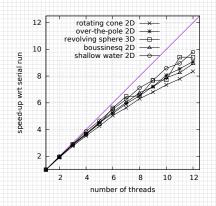

- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>


- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>

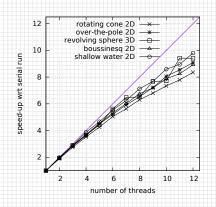

- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>


- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++</p>


- reproduced experiment of Smolarkiewicz and Pudykiewicz, 1992
- <200 lines of code with libmpdata++ https://github.com/igfuw/libmpdataxx/tree/master/tests/paper_2015_GMD/8_boussinesq_2d

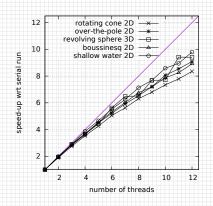

3D, homogeneous divection, serial)

grid ratio 59^3 4.8 $(2 \times 59)^3$ 2.0 $(4 \times 59)^3$ 1.4 $(6 \times 59)^3$ 0.9


3D, homogeneous dvection, serial)

grid ratio 59^3 4.8 $(2\times59)^3$ 2.0 $(4\times59)^3$ 1.4 $(6\times59)^3$ 0.9

ibmpdata++ / F77 CPU-time ratios


(3D, homogeneous advection, serial)

libmpdata++ / F77 CPU-time ratios

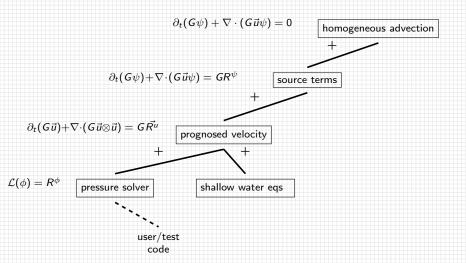
(3D, homogeneous advection, serial)

grid	ratio
59 ³	4.8
$(2 \times 59)^3$	2.0
$(4 \times 59)^3$	1.4
$(6 \times 59)^3$	0.9

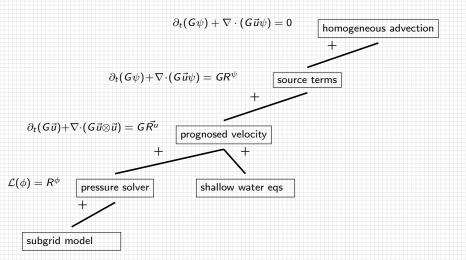
libmpdata++ / F77 CPU-time ratios

(3D, homogeneous advection, serial)

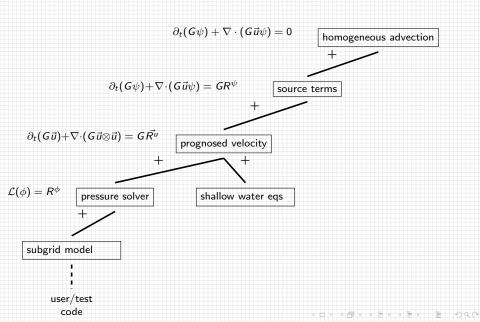
grid	ratio
59 ³	4.8
$(2 \times 59)^3$	2.0
$(4 \times 59)^3$	1.4
$(6 \times 59)^3$	0.9

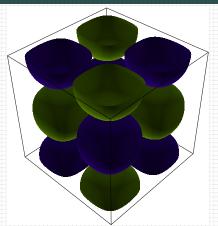

Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

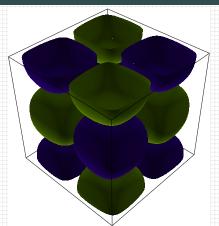

Plan of the talk

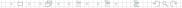
- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata + + 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

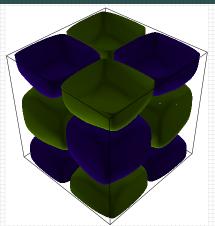

libmpdata++ 1.0: solver/algorithm hierarchy

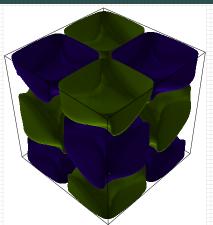


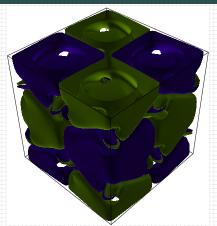
libmpdata++ 2.0: solver/algorithm hierarchy


libmpdata++ 2.0: solver/algorithm hierarchy

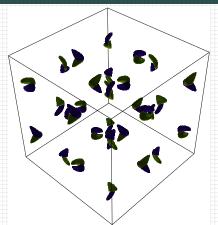



- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>

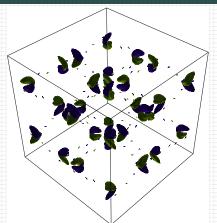

- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>



- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>

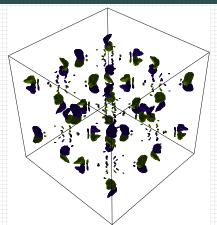

- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>

- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>

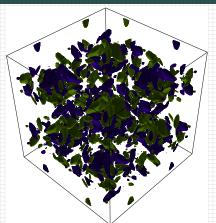


$\overline{\text{libmpdata}} + 2.0$: Taylor-Green vortex example

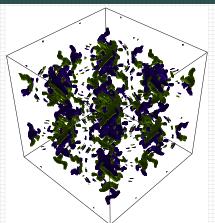
- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++

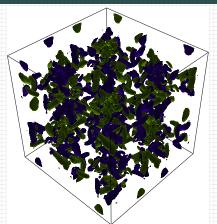


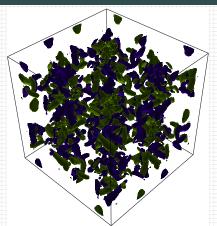
- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++

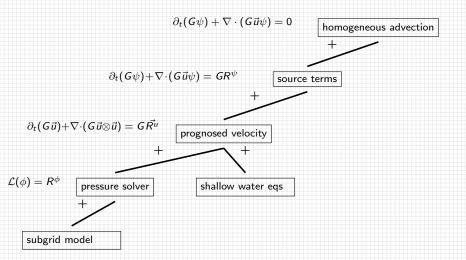


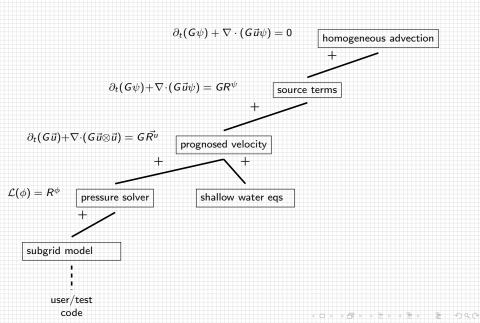
$\overline{\text{libmpdata}+}+2.0$: Taylor-Green vortex example


- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++

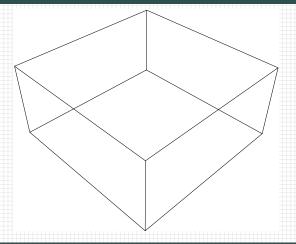

- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>


- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>

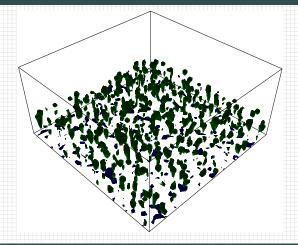

- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++</p>



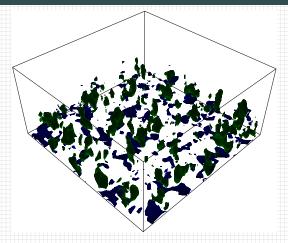
- inspired by spectral calculations of Brachet et al., 1983
- <100 lines of code with libmpdata++ https://github.com/igfuw/libmpdataxx/tree/master/tests/sandbox/turbulence


libmpdata++ 2.0: solver/algorithm hierarchy

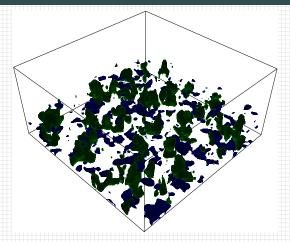
libmpdata++ 2.0: solver/algorithm hierarchy



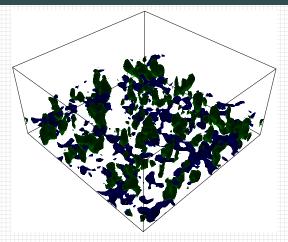
libmpdata++ 2.0: convective boundary layer example

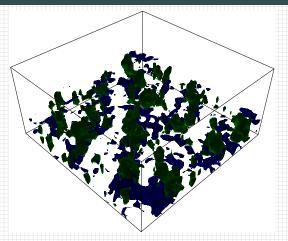

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

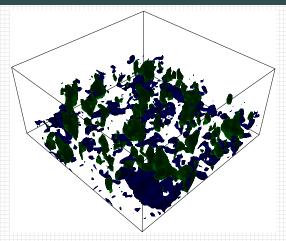
libmpdata++ 2.0: convective boundary layer example

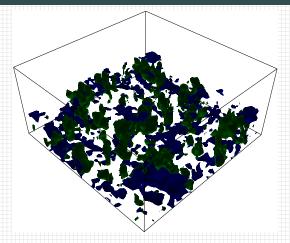


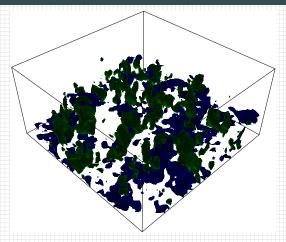
- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

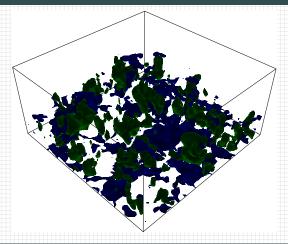

libmpdata++ 2.0: convective boundary layer example

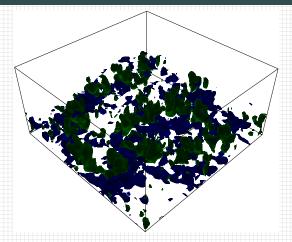

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

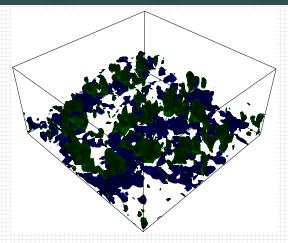

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

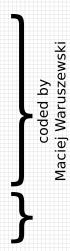

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

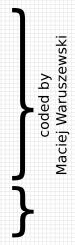

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>


- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>


- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>


- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

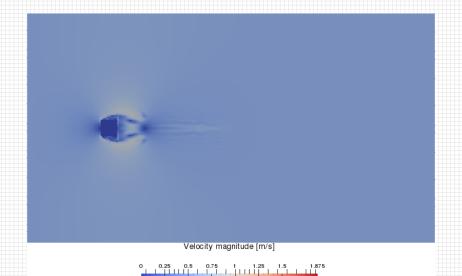

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

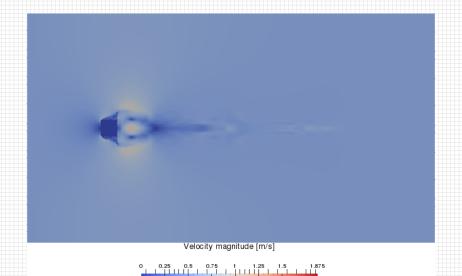

- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++</p>

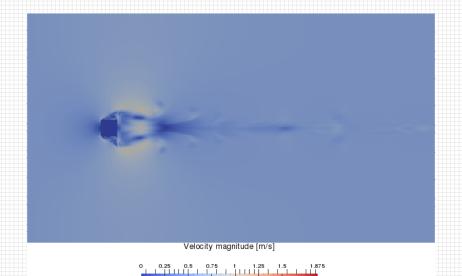
- iLES setup following Margolin et al., 1999
- <250 lines of code with libmpdata++

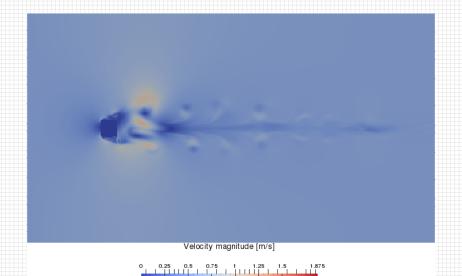
- higher-order operators
 (for DNS/LES simulations)
- adaptive timestepping
- implicit treatment of absorbers
- distributed-memory parallelisation (using Boost MPI & HDF5/MPI-I

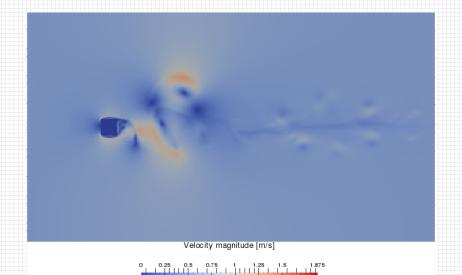
- higher-order operators (for DNS/iLES simulations)
- adaptive timestepping
- implicit treatment of absorbers
 (for improved boundary metan
- distributed-memory parallelisation
 (using Boost MPI & HDF5/MPI-I

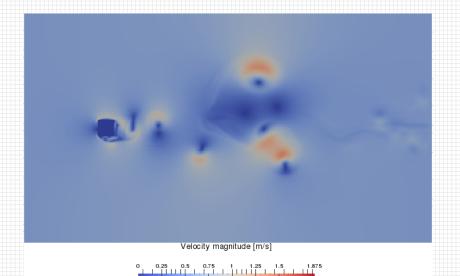


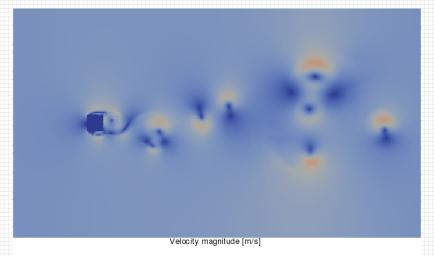

- higher-order operators (for DNS/iLES simulations)
- adaptive timestepping
- implicit treatment of absorbers
 (for immersed-boundary method
- distributed-memory parallelisation (using Boost MPI & HDF5/MPI-II

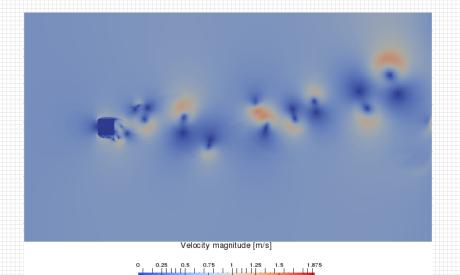

- higher-order operators (for DNS/iLES simulations)
- adaptive timestepping
- implicit treatment of absorbers (for immersed-boundary method)
 - distributed-memory parallelisation (using Boost MPI & HDF5/MPI-IC

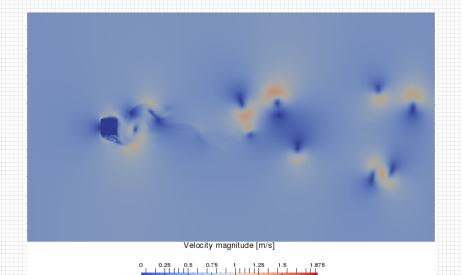

- higher-order operators (for DNS/iLES simulations)
- adaptive timestepping
- implicit treatment of absorbers (for immersed-boundary method)
- distributed-memory parallelisation (using Boost.MPI & HDF5/MPI-IO)

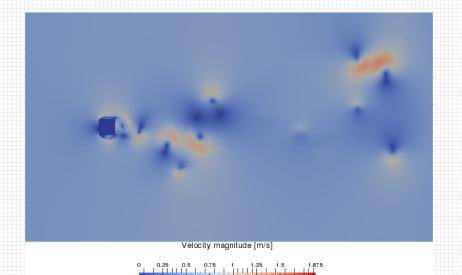

- higher-order operators (for DNS/iLES simulations)
- adaptive timestepping
- implicit treatment of absorbers (for immersed-boundary method)
- distributed-memory parallelisation (using Boost.MPI & HDF5/MPI-IO)

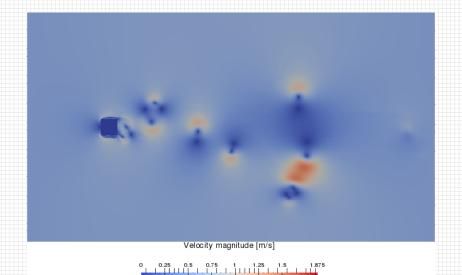


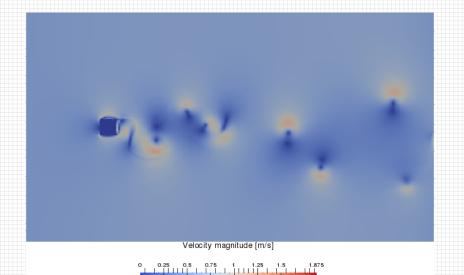


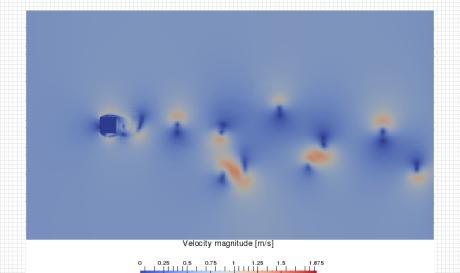


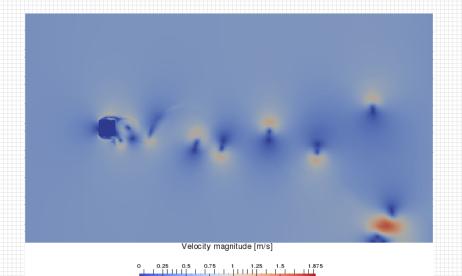


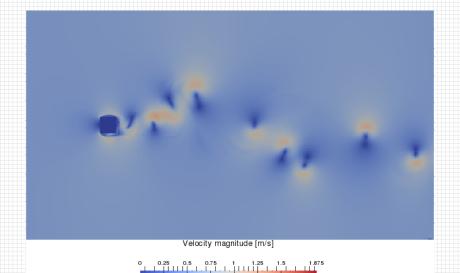


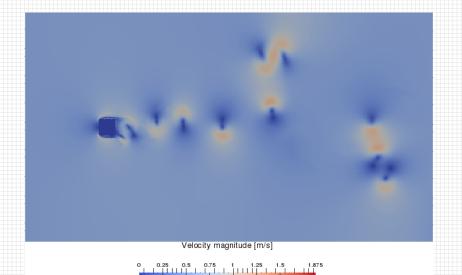




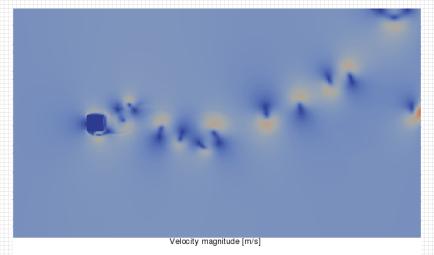


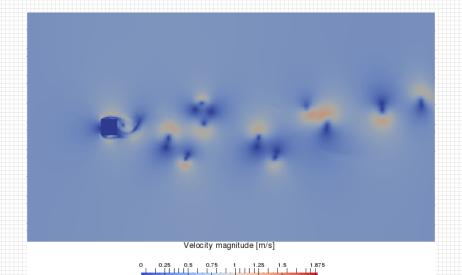


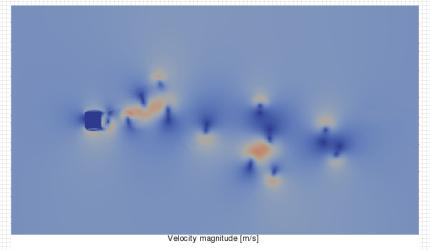


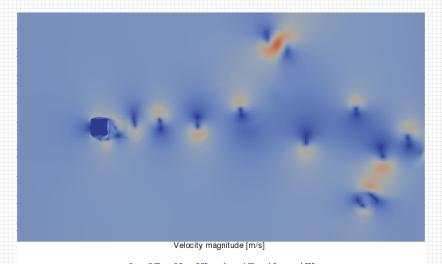


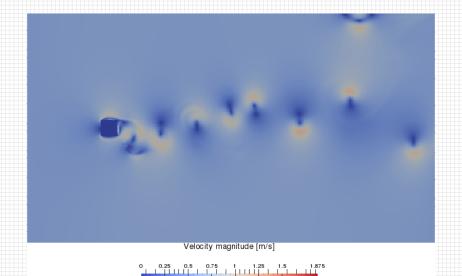


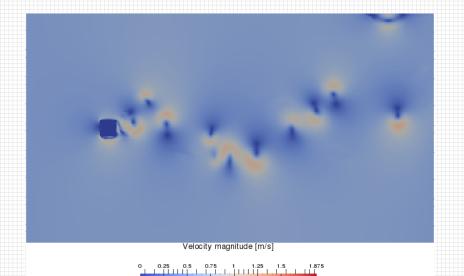


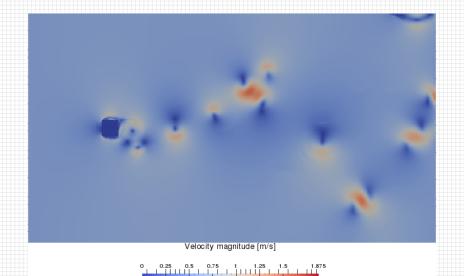


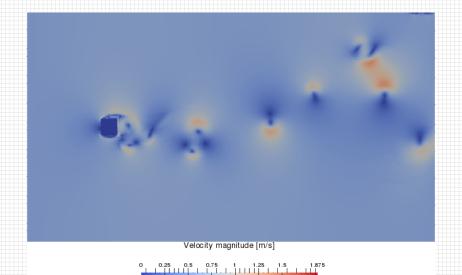


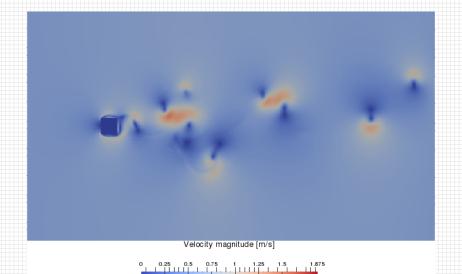


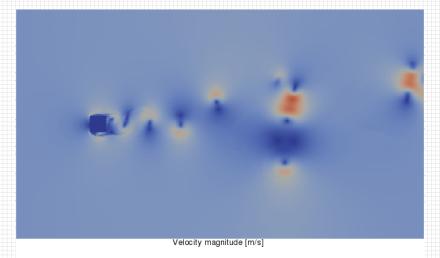


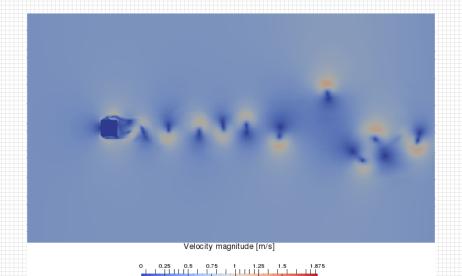


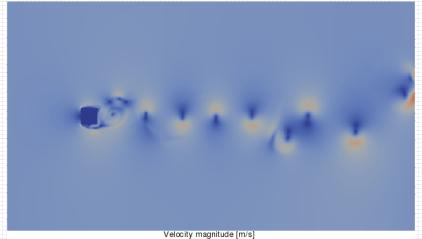


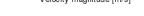


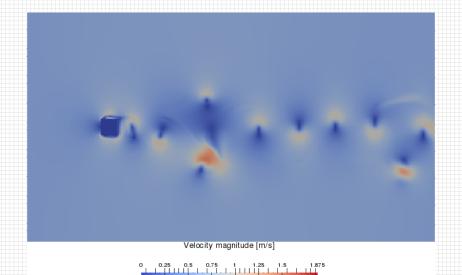


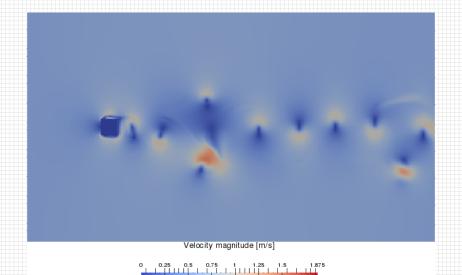












Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata++ 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

Plan of the talk

- 1 what's libmpdata++
- 2 libmpdata++: a hello-world program
- 3 libmpdata + + 1.0: summary of features
- 4 libmpdata++ 2.0: new features under development
- 5 closing remarks

lega

- license: GPL
 - repo: github.com/igtuw/

library component

- solvers/algorithm
 - boundary conditions
 - output handlers:
 - shared-mem concurrence

= distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithm
- boundary conditions
- unes or national and the second secon
- m gnuplot

- = distributed mam concurre
- distributed-mem concur

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithm
- boundary conditions
- output handlers:
- m gnuplot

- C-1-11 threads
- distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

library component

- solvers/algorithms:
 - boundary conditions
- output nandiers:
- shared-mem concurrence

distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithms:
 - ...
 - oundary conditions
- HDE5/XDME (MPLIC
 - gnuplot
- shared-mem concurrency
 - Openivir

 Deart Thread
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 -
- boundary conditions
- = UDEF/VDME (MDLIG
 - gnuplot
- shared-mem concurrency
 - Daniel Thursday
 - C⊥⊥11 throads
- distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
- = HDE5/XDME (MPLIC
 - gnunlot
- shared-mem concurrency
 - OpeniviP
 - Boost, Illieau
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithms:
 - **...**
- boundary conditions:
- output handlers:
 - HDF5/XDMF (MPFICE
 - hared mem concurrence
- snared-mem concurrency
 - Roost Thread
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
 - repo: github.com/igfuw/

- solvers/algorithms:
 - **...**
- boundary conditions:

 - - HDF5/XDMF (MPI-IC
 - gnuplot
- shared-mem concurrency
 - Openivir
 - Boost, I hread
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
- boundary conditions:
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - **...**
- boundary conditions:
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency
 - OpenMP
 - Boost. I hread
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency
 - Openivir
 - Boost. I hread
 - C++11 threads
- distributed-mem concurr

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - **...**
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:

legal

- license: GPL
- repo: github.com/igfuw/

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- OpenMP
 - Boost.Thread
 - \blacksquare C++11 threads
- distributed-mem concurr.:
 - MPI

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

lependencies

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - **...**
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template_based component selection
- inheritance-based component exten
- inneritance-based component ext

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component select
- Inneritance-based component exte
 -

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- snared-mem concurrencyOpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component select
- template-based component selectic
- Inheritance-based component exte
 -

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
- OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

ΔPI

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - **...**
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- inheritance-based component e
- Inheritance-based component exterior

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - · ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
 - template-based component selection
 - inheritance-based component extensions
 - user exposed to Blitz++ API

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component selection
- inheritance-based component extensions
- user exposed to Blitz++ API

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component selection
- inheritance-based component extensions
- user exposed to Blitz++ AP

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - **...**
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component selection
- inheritance-based component extensions
- user exposed to Blitz++ API

legal

- license: GPL
- repo: github.com/igfuw/

library components

- solvers/algorithms:
 - ...
- boundary conditions:
 - ...
- output handlers:
 - HDF5/XDMF (MPI-IO)
 - gnuplot
- shared-mem concurrency:
 - OpenMP
 - Boost.Thread
 - C++11 threads
- distributed-mem concurr.:
 - MPI

dependencies

- C++11
- Blitz++
- Boost (ptr_container, timer, thread, preprocessor, filesystem, format, property_tree, MPI)
- CMake, CTest
- MPI
- HDF5

- header-only library
- template-based component selection
- inheritance-based component extensions
- user exposed to Blitz++ API

libmpdata++ is free/libre open-source software distributed under the terms of GNU GPL v3

you are all more than welcome to:
use, study, extend and redistribute the code

libmpdata++ is free/libre open-source software distributed under the terms of GNU GPL v3

you are all more than welcome to: use, study, extend and redistribute the code

KONKENKEN E 900

ご清聴ありがとうございました。

- libmpdata++ paper: Jaruga et al. 2015, Geosci. Model Dev. doi:10.5194/gmd-8-1005-2015
- our group's website.
 http://foss.igf.fuw.edu.pl/

acknowledgements

- Development of libmpdata have been supported by Poland's National Science Centre (decision no. 2012/06/M/ST10/00434
- and have benefited from computational time granted by the Center for Cooperative Work on Computational Science, Univ. Hyogo, Japan
 - My visit to K\u00f6be has been supported by University of Hyogo

- libmpdata++ paper: Jaruga et al. 2015, Geosci. Model Dev. doi:10.5194/gmd-8-1005-2015
- our group's website: http://foss.igf.fuw.edu.pl/

acknowledgement

- Development of libmpdata + have been supported by Poland's National Science Centre (decision no. 2012/06/M/ST10/00434
- and have benefited from computational time granted by
 the Center for Cooperative Work on Computational Science, Univ. Hyogo, Japan
- My visit to K\u00f6be has been supported by University of Hyogo

- libmpdata++ paper: Jaruga et al. 2015, Geosci. Model Dev. doi:10.5194/gmd-8-1005-2015
- our group's website: http://foss.igf.fuw.edu.pl/

acknowledgements:

- Development of libmpdata++ have been supported by Poland's National Science Centre (decision no. 2012/06/M/ST10/00434)
- and have benefited from computational time granted by the Center for Cooperative Work on Computational Science, Univ. Hyogo, Japan
- My visit to K\u00f6be has been supported by \u00e44\u00

- libmpdata++ paper: Jaruga et al. 2015, Geosci. Model Dev. doi:10.5194/gmd-8-1005-2015
- our group's website: http://foss.igf.fuw.edu.pl/

acknowledgements:

- Development of libmpdata++ have been supported by Poland's National Science Centre (decision no. 2012/06/M/ST10/00434)
- and have benefited from computational time granted by the Center for Cooperative Work on Computational Science, Univ. Hyogo, Japan
- My visit to K\u00f6be has been supported by University of Hyoro

- libmpdata++ paper: Jaruga et al. 2015, Geosci. Model Dev. doi:10.5194/gmd-8-1005-2015
- our group's website: http://foss.igf.fuw.edu.pl/

acknowledgements:

- Development of libmpdata++ have been supported by Poland's National Science Centre (decision no. 2012/06/M/ST10/00434)
- and have benefited from computational time granted by the Center for Cooperative Work on Computational Science, Univ. Hyogo, Japan
- My visit to Kōbe has been supported by University of Hyogo