Turbulence and atmospheric boundary layer Lecture 3 and 4

Marta Wacławczyk

Institute of Geophysics, Faculty of Physics, University of Warsaw
marta.waclawczyk@fuw.edu.pl

May 20, 2020

Summary of lecture 2

(1) Reynolds-stress transport equation

- Subtract Reynolds equation for $\overline{u_{i}}$ from Navier-Stokes equation for u_{i}
- In this way equation for u_{i}^{\prime} is obtained
- Derive equation for u_{j}^{\prime} in analogous way
- Multiply equation for u_{i}^{\prime} by u_{j}^{\prime}, multiply equation for u_{j}^{\prime} by u_{i}^{\prime}
- Add both equations
- Average resulting equation
(2) Physical meaning of different terms in RS transport equation

Reynolds-stress transport equations

RS transport equation

$$
\underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k}}}_{(1)}+\underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{1}{\rho}\left(\frac{\partial \overline{p^{\prime} u_{j}^{\prime}}}{\partial x_{i}}+\frac{\partial \overline{p^{\prime} u_{i}^{\prime}}}{\partial x_{j}}\right)}_{(3)}=\underbrace{\overline{\frac{p^{\prime}}{\rho}\left(\frac{\partial u_{j}^{\prime}}{\partial x_{i}}+\frac{\partial u_{i}^{\prime}}{\partial x_{j}}\right)}}_{(4)}
$$

$$
-\underbrace{\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{j}}}{\partial x_{k}}-\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{j}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{2 \nu\left(\overline{\left.\frac{\partial u_{j}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}\right.}_{(7)}
$$

$$
+\underbrace{\delta_{i 3} \overline{b^{\prime} u_{j}^{\prime}}+\delta_{j 3} \overline{b^{\prime} u_{i}^{\prime}}}_{(8)}+\underbrace{\epsilon_{i k 3} f \overline{u_{k}^{\prime} u_{j}^{\prime}}+\epsilon_{j k 3} f \overline{u_{k}^{\prime} u_{i}^{\prime}}}_{(9)}
$$

Reynolds-stress transport equations

(1) Transport with mean velocity
(2) Turbulent transport
(3) Pressure transport
(9) Pressure-strain rate tensor (redistribution)
(3) Shear production term
(0) Viscous transport
(3) Dissipation tensor
(3) Buoyancy production (positive or negative)
(9) Coriolis term (redistribution)

Transport equation for $\overline{u^{\prime 2}}$

Take $i=j=1$ in RS equation, $\overline{u_{1}^{\prime} u_{1}^{\prime}}=\overline{u^{\prime 2}}$

RS transport equation

$$
\begin{aligned}
\underbrace{\frac{\partial \overline{u_{1}^{\prime 2}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{1}^{\prime 2}}}{\partial x_{k}}}_{(1)} & +\underbrace{\frac{\partial \overline{u_{1}^{\prime 2} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{2}{\rho} \frac{\partial \overline{p^{\prime} u_{1}^{\prime}}}{\partial x_{1}}}_{(3)}=\underbrace{\frac{2 p^{\prime}}{\rho} \frac{\partial u_{1}^{\prime}}{\partial x_{1}}}_{(4)} \\
& -\underbrace{2 \overline{u_{1}^{\prime} u_{k}^{\prime} \frac{\partial \overline{u_{1}}}{\partial x_{k}}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} \overline{u_{1}^{\prime 2}}}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{2 \nu \overline{\left(\frac{\partial u_{1}^{\prime}}{\partial x_{k}}\right)^{2}}}_{(7)} \\
& +\underbrace{2 f \overline{u_{1}^{\prime} u_{2}^{\prime}}}_{(9)}
\end{aligned}
$$

Transport equation for $\overline{v^{\prime 2}}$

Take $i=j=1$ in RS equation, $\overline{u_{2}^{\prime} u_{2}^{\prime}}=\overline{v^{\prime 2}}$

RS transport equation

$$
\begin{aligned}
\underbrace{\frac{\partial \overline{u_{2}^{\prime 2}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial x_{k}}}_{(1)} & +\underbrace{\frac{\partial \overline{u_{2}^{\prime 2} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{2}{\rho} \frac{\partial \overline{p^{\prime} u_{2}^{\prime}}}{\partial x_{2}}}_{(3)}=\underbrace{\frac{2 p^{\prime}}{\rho} \frac{\partial u_{2}^{\prime}}{\partial x_{2}}}_{(4)} \\
& -\underbrace{2 \overline{u_{2}^{\prime} u_{k}^{\prime} \frac{\partial \overline{u_{2}}}{\partial x_{k}}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} \overline{u_{2}^{\prime 2}}}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{2 \nu \overline{\left(\frac{\partial u_{2}^{\prime}}{\partial x_{k}}\right)^{2}}}_{(7)} \\
& -\underbrace{2 f \overline{u_{1}^{\prime} u_{2}^{\prime}}}_{(9)}
\end{aligned}
$$

Transport equation for $\overline{w^{\prime 2}}$

Take $i=j=1$ in RS equation, $\overline{u_{3}^{\prime} u_{3}^{\prime}}=\overline{w^{\prime 2}}$

RS transport equation

$$
\begin{aligned}
\underbrace{\frac{\partial \overline{u_{3}^{\prime 2}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial x_{k}}}_{(1)} & +\underbrace{\frac{\partial \overline{u_{3}^{\prime 2} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{2}{\rho} \frac{\partial \overline{p^{\prime} u_{3}^{\prime}}}{\partial x_{3}}}_{(3)}=\underbrace{\frac{\overline{2 p^{\prime}}}{\rho} \frac{\partial u_{3}^{\prime}}{\partial x_{3}}}_{(4)} \\
& -2 \underbrace{2 \overline{u_{3}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{3}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} \overline{u_{3}^{\prime 2}}}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{2 \nu \overline{\left(\frac{\partial u_{3}^{\prime}}{\partial x_{k}}\right)^{2}}}_{(7)} \\
& +2 \underbrace{\overline{b^{\prime} u_{3}^{\prime}}}_{(8)}
\end{aligned}
$$

Transport equation for the turbulence kinetic energy

Take $i=j$ in RS equation, $k=\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime}}=\frac{1}{2} \overline{u^{\prime 2}+v^{\prime 2}+w^{\prime 2}}$

RS transport equation

$$
\begin{aligned}
\underbrace{\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}}_{(1)} & +\underbrace{\frac{1}{2} \underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{i}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}}_{(3)}+\underbrace{\frac{1}{\rho} \frac{\partial \overline{p^{\prime} u_{i}^{\prime}}}{\partial x_{i}}}_{(3)}=\underbrace{\frac{p^{\prime}}{\rho \frac{\partial u_{i}^{\prime}}{\partial x_{i}}}}_{=0}}_{(2)} \\
& -\underbrace{\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{i}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{\nu \overline{\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}}_{(7)} \\
& +\underbrace{\overline{b^{\prime} u_{3}^{\prime}}}_{=0}+\underbrace{f \overline{u_{1}^{\prime} u_{2}^{\prime}}-\overline{f u_{1}^{\prime} u_{2}^{\prime}}}_{(8)}
\end{aligned}
$$

Transport equation for turbulence kinetic energy

Take $i=j$ in RS equation, $k=\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime}}=\frac{1}{2} \overline{u^{\prime 2}+v^{\prime 2}+w^{\prime 2}}$

k transport equation

$$
\begin{aligned}
\underbrace{\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}}_{(1)} & +\underbrace{\frac{1}{2} \underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{i}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}}_{(3)}}_{(2)}+\underbrace{\frac{1}{\rho} \frac{\partial \overline{p^{\prime} u_{i}^{\prime}}}{\partial x_{i}}}_{(7)}= \\
& -\underbrace{\overline{u_{i}^{\prime} u_{k}^{\prime} \frac{\partial \overline{u_{i}}}{\partial x_{k}}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}}}_{(6)}-\underbrace{\nu \overline{\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}}_{(7)} \\
& +\underbrace{\frac{b^{\prime} u_{3}^{\prime}}{2}}_{(7)}
\end{aligned}
$$

Dissipation rate of the turbulence kinetic energy

Dissipation rate

$$
\epsilon=-\underbrace{\nu \overline{\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}}_{(7)}
$$

Transport equation for the dissipation rate

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial t}+\overline{u_{k}} \frac{\partial \epsilon}{\partial x_{k}}=R H S \tag{1}
\end{equation*}
$$

Estimation of characteristic scales of turbulence

Dimensional analysis

$$
k=\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime}}=\left[\frac{m^{2}}{s^{2}}\right], \quad \epsilon=\nu \overline{\left(\frac{\partial u_{i}^{\prime}}{\partial x_{k}} \frac{\partial u_{i}^{\prime}}{\partial x_{k}}\right)}=\left[\frac{m^{2}}{s^{3}}\right]
$$

Characteristic velocity, length and time scales

$$
\begin{gathered}
U \sim \sqrt{k}, \quad L \sim \frac{k^{3 / 2}}{\epsilon}, \quad \tau=\frac{L}{U} \\
L=C_{\epsilon} \frac{k^{3 / 2}}{\epsilon}
\end{gathered}
$$

Turbulence modelling

The main idea of common RANS turbulence models is to replace the whole range of scales in turbulence by a single, characteristic scale L with the corresponding velocity scale U.
(1) Turbulent (eddy) viscosity

$$
\nu_{t} \sim U L
$$

(2) Turbulent (eddy) diffusivity

$$
\kappa_{t}=\nu_{t} / P r_{t}
$$

$P r_{t}=\mathcal{O}(1)$ is the turbulent

Prandtl number
ν_{t}, κ_{t} and $P r_{t}$ are the properties of the flow, not the material.

Turbulence modelling

Gradient diffusion hypothesis
$\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k=-\nu_{t}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)$
Assumes that the anisotropy tensor $a_{i j}=\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k$ is aligned with the mean rate-of-strain tensor.

Turbulent fluxes

$$
\overline{b^{\prime} u_{i}^{\prime}}=-\kappa_{t} \frac{\partial \bar{b}}{\partial x_{i}}
$$

Turbulence modelling

0 -equation models

$\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k=-\nu_{t}\left(\frac{\partial \overline{\bar{u}_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)$
with mixing length I_{m}

$$
\nu_{t}=I_{m}^{2}\left|\frac{\partial \bar{u}}{\partial z}\right|
$$

Near the wall, in the so-called log-law region

$$
I_{m} \sim z
$$

Turbulence modelling

1-equation models -

Spallart-Allamaras model
$\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k=-\nu_{t}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)$

+ transport equation for ν_{t}

$$
\begin{equation*}
\frac{\partial \nu_{t}}{\partial t}+\overline{u_{k}} \frac{\partial \nu_{t}}{\partial x_{k}}=R H S \tag{2}
\end{equation*}
$$

Near the wall, in the so-called log-law region

Figure: Source:
https://www.nasa.gov/multimedia/imagegallery/image_feature_431.h (NASA - public domain)

$$
I_{m} \sim z
$$

Turbulence modelling

1-equation models -

k-equation
$\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k=-\nu_{t}\left(\frac{\partial \overline{\bar{u}_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)$
with

$$
\nu_{t}=c k^{1 / 2} I_{m},
$$

+ transport equation for k

$$
\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}=R H S
$$

with dissipation

$$
\epsilon=C_{D} k^{3 / 2} / I_{m}
$$

Turbulence modelling

k transport equation

$$
\underbrace{\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}}_{(1)}+\frac{1}{2} \underbrace{\frac{\partial \overline{u_{i}^{\prime} u_{i}^{\prime} u_{k}^{\prime}}}{\partial x_{k}}}_{(2)}+\underbrace{\frac{1}{\rho} \frac{\partial \overline{p^{\prime} u_{i}^{\prime}}}{\partial x_{i}}}_{(3)}=-\underbrace{\overline{u_{i}^{\prime} u_{k}^{\prime}} \frac{\partial \overline{u_{i}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}}}_{(6)}-\epsilon
$$

Model for k transport

$$
\underbrace{\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}}_{(1)}-\underbrace{\frac{\partial}{\partial x_{k}}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial x_{k}}\right)}_{(2)+(3)}=\underbrace{2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial x_{k}} \frac{\partial \overline{u_{i}}}{\partial x_{k}}}_{(5)}+\underbrace{\nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}}}_{(6)}-\epsilon
$$

Turbulence modelling

2-equation models - $\mathbf{k}-\epsilon$

$$
\overline{u_{i}^{\prime} u_{j}^{\prime}}-\frac{2}{3} \delta_{i j} k=-\nu_{t}\left(\frac{\partial \overline{u_{i}}}{\partial x_{j}}+\frac{\partial \overline{u_{j}}}{\partial x_{i}}\right)
$$

with

$$
\nu_{t}=c_{\mu} \frac{k^{2}}{\epsilon},
$$

+ transport equation for k

$$
\frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}=R H S
$$

+ transport equation for ϵ

Figure: Source:
https://www.nasa.gov/multimedia/imagegallery/image_feature_431.h (NASA - public domain)

$$
\frac{\partial \epsilon}{\partial t}+\overline{u_{k}} \frac{\partial \epsilon}{\partial x_{k}}=R H S
$$

Reynolds-stress modelling

RS models, no eddy viscosity assumption

$$
\overline{u_{i}^{\prime} u_{j}^{\prime}}
$$

+ transport equation for $\overline{u_{i}^{\prime} u_{j}^{\prime}}$

$$
\frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial t}+\overline{u_{k}} \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{k}}=R H S
$$

Figure: CFD simulation showing vorticity isosurfaces behind propeller. Author: User:Citizenthom, Source: Wikipedia, BB-CY-3.0

Reynolds-stress modelling

algebraic RS models

$$
\frac{\overline{u_{u}^{\prime} u_{j}^{\prime}}}{k}(P-\epsilon)=R H S
$$

+ transport equations for k and ϵ

$$
\begin{aligned}
& \frac{\partial k}{\partial t}+\overline{u_{k}} \frac{\partial k}{\partial x_{k}}=R H S \\
& \frac{\partial \epsilon}{\partial t}+\overline{u_{k}} \frac{\partial \epsilon}{\partial x_{k}}=R H S
\end{aligned}
$$

Figure: CFD simulation showing vorticity isosurfaces behind propeller. Author: User:Citizenthom, Source: Wikipedia, BB-CY-3.0

Reynolds-stress modelling - simplifications

Statistical stationarity

Averaged quantities, like e.g. mean velocity, Reynolds stresses etc. do not change with time

$$
\frac{\partial \bar{Q}}{\partial t}=0
$$

Statistical homogeneity

Averaged quantities, like e.g. mean velocity, Reynolds stresses etc. do not depend on position

$$
\frac{\partial \bar{Q}}{\partial x}=0, \quad \text { or/and } \quad \frac{\partial \bar{Q}}{\partial y}=0 \quad \text { or/and } \quad \frac{\partial \bar{Q}}{\partial z}=0
$$

Reynolds-stress modelling - simplifications

Isotropy

Averaged quantities, like e.g. two-point correlations etc. do not depend on direction, but only on the module of the distance vector between points $|\boldsymbol{r}|=r$

$$
R(\boldsymbol{x}, \boldsymbol{r}, t)=\overline{u(\boldsymbol{x}, t) u(\boldsymbol{x}+\boldsymbol{r}, t)}=R(r, t)
$$

With these simplifications, analysis of the governing PDE becomes somewhat simpler.
Remember that the instantaneous quantities, like the velocity $\boldsymbol{u}(\boldsymbol{x}, t)$, buoyancy $b(\boldsymbol{x}, t)$ etc. are fluctuating. The stationarity, homegeneity and isotropy concerns the ensemble averaged quantities!

Reynolds-stress modelling - simplified equations

Consider a model for turbulence kinetic energy equation under the homogeneity assumption

Homogeneity in $x_{1}=x, x_{2}=y$ and $x_{3}=z$ directions

$$
\frac{\partial k}{\partial t}+\underbrace{\overline{u_{k}} \frac{\partial k}{\partial x_{k}}}_{=0}-\underbrace{\frac{\partial}{\partial x_{k}}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial x_{k}}\right)}_{=0}=\underbrace{2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial x_{k}} \frac{\partial \overline{u_{i}}}{\partial x_{k}}}_{=0}+\underbrace{\nu \frac{\partial^{2} k}{\partial x_{k} \partial x_{k}}}_{=0}-\epsilon
$$

Homogeneity in $x_{1}=x, x_{2}=y$ and $x_{3}=z$ directions

$$
\frac{\partial k}{\partial t}=-\epsilon
$$

This equation describes freely decaying turbulence. The dissipation ϵ still requires a model.

Reynolds-stress modelling - simplified equations

k-equation with homogeneity assumption

$$
\frac{\partial k}{\partial t}=-\epsilon
$$

This equation describes freely decaying turbulence. The dissipation ϵ still requires a model, so the solution is far from obvious even in this simplified case. E.g. Launder-Sharma model with simplifications due to homogeneity reads
ϵ-equation with homogeneity assumption

$$
\frac{\partial \epsilon}{\partial t}=-C_{\epsilon 2} \frac{\epsilon^{2}}{k}
$$

where $C_{\epsilon 2}=1.92$.

Reynolds-stress modelling - simplified equations

$k-\epsilon$-equation with homogeneity assumption

$$
\frac{\partial k}{\partial t}=-\epsilon, \quad \frac{\partial \epsilon}{\partial t}=-C_{\epsilon 2} \frac{\epsilon^{2}}{k}
$$

In this case $k-\epsilon$-equations have an analytical solution
$k-\epsilon$-equations solution

$$
k(t)=k_{0}\left(\frac{t}{t_{0}}\right)^{-n}, \quad \epsilon(t)=\epsilon_{0}\left(\frac{t}{t_{0}}\right)^{-(n+1)}, \quad n=\frac{1}{C_{\epsilon 2}-1}
$$

Experimental observations suggest $n \approx 1.15-1.45$.

RS modelling - free shear flows

Let us consider stationary, free-shear flows, that is, inhomogeneous flows far from boundaries, with a mean velocity gradient.
The simplifications for averaged quantities are
free-shear flows - simplifications

$$
\frac{\partial}{\partial x}=0, \quad \frac{\partial}{\partial y}=0, \quad \bar{v}=0, \quad \bar{w}=0
$$

additionally, stationarity can be assumed

$$
\frac{\partial}{\partial t}=0
$$

RS modelling - free shear flows

$$
\begin{aligned}
\frac{\partial}{\partial x}=0, \quad \frac{\partial}{\partial y} & =0, \quad \bar{v}=0, \quad \bar{w}=0 \\
\frac{\partial}{\partial z} & \neq 0,
\end{aligned}
$$

Figure: Free shear flow

RS modelling - simplified equations, free shear flows

k - equation

$$
\begin{aligned}
& \frac{\partial k}{\partial t}+\underbrace{\frac{\partial k}{\partial x}}_{=0}+\underbrace{\bar{v}}_{=0} \underbrace{\frac{\partial k}{\partial y}}_{=0}+\underbrace{\bar{w}}_{=0} \frac{\partial k}{\partial z} \\
& -\underbrace{\frac{\partial}{\partial x}}_{=0}\left(\frac{\nu_{t}}{P_{r}} \frac{\partial k}{\partial x}\right)-\underbrace{\frac{\partial}{\partial y}}_{=0}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial y}\right)-\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial z}\right) \\
& =\underbrace{2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial x} \frac{\partial \overline{u_{i}}}{\partial x}}_{=0}+\underbrace{2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial y} \frac{\partial \overline{u_{i}}}{\partial y}}_{=0}+2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial z} \frac{\partial \overline{u_{i}}}{\partial z} \\
& +\underbrace{\nu \frac{\partial^{2} k}{\partial x^{2}}}_{=0}+\underbrace{\nu \frac{\partial^{2} k}{\partial y^{2}}}_{=0}+\nu \frac{\partial^{2} k}{\partial z^{2}}-\epsilon
\end{aligned}
$$

RS modelling - simplified equations, free shear flows

$k-\epsilon$ - equations

$$
\begin{aligned}
\frac{\partial k}{\partial t} & =\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial z}\right)+\underbrace{2 \nu_{t} \frac{\partial \overline{u_{i}}}{\partial z} \frac{\partial \overline{u_{i}}}{\partial z}}_{\mathcal{P}}+\nu \frac{\partial^{2} k}{\partial z^{2}}-\epsilon \\
\frac{\partial \epsilon}{\partial t} & =\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial z}\right)+C_{\epsilon 1} \frac{\epsilon}{k} \mathcal{P}-C_{\epsilon 2} \frac{\epsilon^{2}}{k}
\end{aligned}
$$

with $C_{\epsilon 1}=1.44, C_{\epsilon 2}=1.92, \sigma_{\epsilon}=1.0$,

RS modelling - simplified equations, free shear flows + homogeneity

$$
\frac{\partial}{\partial x}=0, \quad \frac{\partial}{\partial y}=0, \quad \bar{v}=0, \quad \bar{w}=0
$$

Only \bar{u} depends on z coordinate, such that

$$
\frac{\partial \bar{u}}{\partial z}=\text { const }
$$

for remaining statistics

$$
\frac{\partial}{\partial z}=0
$$

Figure: Free shear flow

RS modelling - simplified equations, free shear flows + homogeneity

$$
\frac{\partial}{\partial z}=0, \quad \text { apart from } \quad \frac{\partial \bar{u}}{\partial z}=\text { const. }, \quad \mathcal{P}=\text { const },
$$

$k-\epsilon$ - equations

$$
\begin{aligned}
\frac{\partial k}{\partial t} & =\mathcal{P}-\epsilon \\
\frac{\partial \epsilon}{\partial t} & =C_{\epsilon 1} \frac{\epsilon}{k} \mathcal{P}-C_{\epsilon 2} \frac{\epsilon^{2}}{k}
\end{aligned}
$$

with $C_{\epsilon 1}=1.44, C_{\epsilon 2}=1.92, \sigma_{\epsilon}=1.0$,

RS modelling - simplified equations, free shear flows + homogeneity

Reynolds-stresses become self-similar, the non-dimensional parameter \mathcal{P} / ϵ becomes a constant

Turbulence time scale $\tau=k / \epsilon$

$$
\frac{\partial}{\partial t} \frac{k}{\epsilon}=\left(C_{\epsilon 2}-1\right)-\left(C_{\epsilon 1}-1\right) \frac{\mathcal{P}}{\epsilon}
$$

Stationary case:

$$
0=\left(C_{\epsilon 2}-1\right)-\left(C_{\epsilon 1}-1\right) \frac{\mathcal{P}}{\epsilon}
$$

Which results in

$$
\frac{\mathcal{P}}{\epsilon}=\frac{\left(C_{\epsilon 2}-1\right)}{\left(C_{\epsilon 1}-1\right)}=\frac{0.92}{0.44} \approx 2.09
$$

RS modelling - simplified equations - shear flow + buoyancy

$k-\epsilon-$ equations

$$
\begin{aligned}
\frac{\partial \bar{u}}{\partial t} & =-\frac{1}{\rho} \frac{\partial \bar{P}}{\partial x}-\frac{\partial}{\partial z}\left(\nu_{t} \frac{\partial \bar{u}}{\partial z}\right)+\nu \frac{\partial^{2} \bar{u}}{\partial z^{2}} \\
0 & =-\frac{1}{\rho} \frac{\partial \bar{P}}{\partial z}+\bar{b} \\
\frac{\partial \bar{b}}{\partial t} & =-\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial \bar{b}}{\partial z}\right)+\nu \frac{\partial^{2} \bar{b}}{\partial z^{2}} \\
\frac{\partial k}{\partial t} & =\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{P r_{t}} \frac{\partial k}{\partial z}\right)+\mathcal{P}+\nu \frac{\partial^{2} k}{\partial z^{2}}-\epsilon-\frac{\nu_{t}}{P r_{t}} \frac{\partial \bar{b}}{\partial z} \\
\frac{\partial \epsilon}{\partial t} & =\frac{\partial}{\partial z}\left(\frac{\nu_{t}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial z}\right)+C_{\epsilon 1} \frac{\epsilon}{k} \mathcal{P}-C_{\epsilon 2} \frac{\epsilon^{2}}{k}
\end{aligned}
$$

Large eddy simulations

Figure: Large Eddy Simulation of turbulent jet. Source: https://commons.wikimedia.org/wiki/File:LES_Turbulent_Velocity_Field.png, Author: Charlesreid1, CC-BY-SA 3.0

Large eddy simulations - filtering

Filtering operation

$$
\widetilde{Q}(\boldsymbol{x}, t)=\int Q(\boldsymbol{x}-\boldsymbol{r}, t) G(\boldsymbol{r}, \boldsymbol{x}) d \boldsymbol{r}
$$

where

$$
G\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right), \text { is a filter function, such that }
$$

$$
\int G(\boldsymbol{r}, \boldsymbol{x}) \mathrm{d} \boldsymbol{r}=1
$$

Homogeneous filter (does not depend on position) $G=G(\boldsymbol{r})$ Isotropic filter (does not depend on position) $G=G(r)$

Large eddy simulations - filtering

Figure: Resolved and subgrid part of the energy spectrum

Figure: Instantaneous (black line) and filtered velocity (red line).

Box filter

$$
G(r)=\frac{1}{\Delta} H\left(\frac{1}{2} \Delta-|\boldsymbol{r}|\right)
$$

where H is a Heaviside function.
In the Fourier space

$$
\hat{G}(\kappa)=\int \mathrm{e}^{i \kappa r} G(r) d r=\frac{\sin \left(\frac{1}{2} \kappa \Delta\right)}{\frac{1}{2} \kappa \Delta}
$$

Figure: Box filter https://en.wikipedia.org/wiki/Filter_(large_eddy_simulation), Author: Charlesreid1, CC-BY-SA-4.0.

Gaussian filter

$$
G(r)=\left(\frac{6}{\pi \Delta^{2}}\right)^{1 / 2} \exp \left(-\frac{6 r^{2}}{\Delta^{2}}\right)
$$

where H is a Heaviside function.
In the Fourier space

$$
\hat{G}(\kappa)=\int \mathrm{e}^{i \kappa r} G(r) d r=\exp \left(-\frac{\kappa^{2} \Delta^{2}}{24}\right)
$$

Figure: Gaussian filter https://en.wikipedia.org/wiki/Filter_(large.eddy_simulation), Author: Charlesteid1, CC-BY-SA-4.0.

Sharp spectral filter

$$
G(r)=\frac{\sin (\pi r / \Delta)}{\pi r}
$$

where H is a Heaviside function.
In the Fourier space

$$
\hat{G}(\kappa)=\int \mathrm{e}^{i \kappa r} G(r) d r=H\left(\frac{\pi}{\Delta}-|\kappa|\right)
$$

Figure: Sharp spectral filter https://en.wikipedia.org/wiki/Filter_(large.eddy_simulation), Author: Charlesteid1, CC-BY-SA-4.0.

Large eddy simulations - filtering

Decomposition of velocity filed

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\underbrace{\widetilde{\boldsymbol{u}(\boldsymbol{x}, t)}}_{\text {filtered velocity }}+\underbrace{}_{\text {subgrid (residual) }} \underbrace{\boldsymbol{u}^{\prime}(\boldsymbol{x}, t)}_{\text {velocity }}
$$

Properties of the filtering operator

$$
\widetilde{Q+P}=\widetilde{Q}+\widetilde{P}, \quad \widetilde{\frac{\partial Q}{\partial t}}=\frac{\partial \widetilde{Q}}{\partial t}
$$

If the filter is homogeneous, then

$$
\frac{\widetilde{\partial Q}}{\partial x_{i}}=\frac{\partial \widetilde{Q}}{\partial x_{i}}
$$

But

$$
\widetilde{\widetilde{Q}} \neq \widetilde{Q}, \quad \text { hence } \quad \widetilde{Q^{\prime}}=\widetilde{Q-\widetilde{Q}} \neq 0
$$

Filtered equations

Momentum

$$
\frac{\partial \widetilde{u}_{i}}{\partial t}+\widetilde{u}_{j} \frac{\partial \widetilde{u}_{i}}{\partial x_{j}}+\frac{\partial}{\partial x_{j}} \underbrace{\left(\widetilde{u_{i} u_{j}}-\widetilde{u}_{i} \widetilde{u}_{j}\right)}_{\tau_{i j}^{r}}=-\frac{1}{\rho} \frac{\partial \widetilde{p}}{\partial x_{i}}+\nu \frac{\partial^{2} \widetilde{u}_{i}}{\partial x_{j} \partial x_{j}}+\delta_{i 3} \widetilde{b}+\epsilon_{i j 3} f \widetilde{u}_{j}
$$

Buoyancy

$$
\frac{\partial \widetilde{b}}{\partial t}+\widetilde{u}_{j} \frac{\partial \widetilde{b}}{\partial x_{j}}+\frac{\partial}{\partial x_{j}} \underbrace{\left(\widetilde{b u}_{j}-\tilde{b} \widetilde{u}_{j}\right)}_{q_{i}^{r}}=\kappa \frac{\partial^{2} \widetilde{b}}{\partial x_{j} \partial x_{j}}
$$

Continuity

$$
\frac{\partial \widetilde{u}_{i}}{\partial x_{i}}=0
$$

Smagorinsky model

Residual stresses

$$
\tau_{i j}^{r}=\widetilde{u_{i} u_{j}}-\widetilde{u}_{i} \widetilde{u}_{j}
$$

Deviatoric part of $\tau_{i j}^{r}$

$$
\begin{gathered}
\tau_{i j}^{d}=\tau_{i j}^{r}-\frac{1}{3} \tau_{i j}^{r} \delta_{i j}=-2 \nu_{r} \widetilde{S_{i j}}=-\nu_{r}\left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}}+\frac{\partial \widetilde{u}_{j}}{\partial x_{i}}\right) \\
\nu_{r}=l_{s}^{2}\left(\widetilde{S_{i j}} \widetilde{S_{i j}}\right)^{1 / 2}=\left(C_{s} \Delta\right)^{2} \mathcal{S}
\end{gathered}
$$

So, it is assumed that the Smagorinsky length scale is proportional to the filter width $I_{s}=C_{s} \Delta$

Decomposition of residual stresses

Proposed by Germano (1986)

Residual stresses

$$
\begin{gathered}
\tau_{i j}^{r}=\widetilde{u_{i} u_{j}}-\widetilde{u}_{i} \widetilde{u}_{j}, \quad u_{i}=\widetilde{u}_{i}+u_{i}^{\prime} \\
\tau_{i j}^{r}=\mathcal{L}_{i j}+\mathcal{C}_{i j}+\mathcal{R}_{i j}
\end{gathered}
$$

Decomposition of residual stresses

Proposed by Germano (1986)
Leonard stresses

$$
\mathcal{L}_{i j}=\widetilde{\widetilde{u}_{i} \widetilde{u}_{j}}-\tilde{\widetilde{u}}_{i} \widetilde{\widetilde{u}}_{j}
$$

cross stresses

$$
\mathcal{C}_{i j}=\widetilde{\widetilde{u}_{i} u_{j}^{\prime}}+\widetilde{\widetilde{u}_{j} u_{i}^{\prime}}-\widetilde{\widetilde{u}}_{i} \widetilde{u}_{j}^{\prime}-\widetilde{\widetilde{u}}_{j} \widetilde{u}_{i}^{\prime}
$$

SGS Reynolds stresses

$$
\mathcal{R}_{i j}=\widetilde{u_{i}^{\prime} u_{j}^{\prime}}-\widetilde{u_{i}^{\prime}} \tilde{u_{j}^{\prime}}
$$

Germano model

Let us consider two filters, one of width Δ and a second one of width 2Δ Test filtering operation will be denoted by $\hat{\ominus}$.

Filter and test filter

$$
\begin{aligned}
& \tau_{i j}^{r}=\widetilde{u_{i} u_{j}}-\widetilde{u}_{i} \widetilde{u}_{j}, \\
& T_{i j}^{r}=\widehat{\widehat{u}_{i} u_{j}}-\widehat{\widetilde{u}}_{i} \widetilde{\tilde{u}}_{j},
\end{aligned}
$$

Let us apply the test filtering operation to $\tau_{i j}^{r}$ and subtract $\widehat{\tau_{i j}^{r}}$ from $T_{i j}^{r}$

Leonard stresses

$$
\mathcal{L}_{i j}=T_{i j}^{r}-\widehat{\tau_{i j}^{r}}=\widehat{\widetilde{u}_{i} \widetilde{u}_{j}}-\widehat{\widetilde{u}}_{i} \widehat{\tilde{u}}_{j}
$$

Germano model

Let us consider two filters, one of width Δ and a second one of width $\hat{\Delta}=2 \Delta$ Test filtering operation will be denoted by \hat{Q}.

Model

$$
\begin{gathered}
\tau_{i j}^{a}=-2 c_{s} \Delta^{2} \widetilde{\mathcal{S}} \widetilde{S_{i j}} \\
T_{i j}^{a}=-2 c_{s} \hat{\Delta}^{2} \widehat{\widetilde{\mathcal{S}}} \widehat{\widehat{S}_{i j}}
\end{gathered}
$$

Let us apply the test filtering operation to $\tau_{i j}^{r}$ and subtract $\widehat{\tau_{i j}^{r}}$ from $T_{i j}^{r}$

Leonard stresses

$$
\mathcal{L}_{i j}^{a}=T_{i j}^{a}-\widehat{\tau_{i j}^{a}}=2 c_{s} \Delta^{2} \widehat{\widehat{\mathcal{S}} \widetilde{S}_{i j}}-2 c_{s} \hat{\Delta}^{2} \widehat{\widetilde{\mathcal{S}}} \widehat{\widehat{S}_{i j}}=c_{s} M_{i j}
$$

In LES both $\mathcal{L}_{i j}^{a}$ and $M_{i j}$ are known in terms of \widetilde{u}, so this relation can be used to determine local value of c_{s}.

Germano model

Determine c_{s} by the local minimalization procedure

Model

$$
c_{S}(\boldsymbol{x}, t)=M_{i j} \mathcal{L}_{i j} / M_{k l} M_{k l}
$$

Values of $c_{S}<0$ are possible (although computationally unstable) indication of backscatter. In practice c_{S} is set to $c_{S}=0$ in such situation.

LES vs. RANS

RANS - one length scale L and one velocity scale $U \sim \sqrt{k}$,
$k=\int E(\kappa) d \kappa$

LES - resolved scales $\kappa<\kappa_{\text {cut }}$ and subgrid scales for wavenumbers $\kappa<\kappa_{\text {cut }}$

References

Pope S B (2000)
Turbulent Flows
Cambridge University Press
Tennekes H, Lumley J L (1972)
An introduction to turbulence
MIT Press

The End

