Extra exercises for midterm exam

1. Derive the hypsometric equation. Derive the thermal wind equation. Derive the equation for geostrophic balance in isothermal coordinates.
2. Find the geopotential profile $\Phi(p)$ in a hydrostatic atmosphere of uniform temperature. What is the geopotential height at the $p=300 \mathrm{hPa}$ surface for the temperature $T=$ 250 K and surface pressure $p_{s}=1000 \mathrm{hPa}$? Find the geopotential profile $\Phi(p)$ in a hydrostatic atmosphere of constant potential temperature θ.
3. Assuming that the geostrophic wind is purely zonal $\left(v_{g}=0\right)$ and independent of height, the wind profile in the atmospheric Ekman layer reads

$$
\begin{aligned}
u & =u_{g}\left[1-e^{-\gamma z} \cos (\gamma z)\right] \\
v & =u_{g} e^{-\gamma z} \sin (\gamma z)
\end{aligned}
$$

where $\gamma=\sqrt{f /(2 A)}$ and A is the eddy diffusivity. Evaluate the frictionally induced ageostrophic transport (U, V), defined as

$$
U=\int_{0}^{\infty}\left(u-u_{g}\right) \mathrm{d} z, \quad V=\int_{0}^{\infty}\left(v-v_{g}\right) \mathrm{d} z
$$

How is the ageostrophic transport oriented with respect to the friction force $\left(\tau_{x}, \tau_{y}\right)$ at the gradient wind level?
4. The planet Venus rotates about its axis so slowly, that to a reasonable approximation the Coriolis parameter may be set equal to zero. For steady, frictionless motion parallel to latitude circles the momentum equation then reduces to a type of cyclostrophic balance

$$
\frac{u^{2} \tan \varphi}{a}=-\frac{1}{\rho} \frac{\partial p}{\partial y}
$$

By transforming this expression to isobaric coordinates, show that the thermal wind equation in this case can be expressed in the form

$$
\omega_{r}^{2}\left(p_{2}\right)-\omega_{r}^{2}\left(p_{1}\right)=\frac{R \ln \left(p_{2} / p_{1}\right)}{a \sin \varphi \cos \varphi} \frac{\partial\langle T\rangle}{\partial y}
$$

where R is the gas constant, a the radius of the planet, and $\omega_{r}=u /(a \cos \varphi)$ is the relative angular velocity. How must $\langle T\rangle$ (vertically averaged temperature) vary with respect to latitude in order that ω_{r} be a function of pressure only? If the zonal velocity at about 60 km height above the equator $\left(p=2.9 \times 10^{5} \mathrm{~Pa}\right)$ is $100 \mathrm{~m} / \mathrm{s}$ and the zonal velocity vanishes at the surface of the planet ($p_{0}=9.5 \times 10^{6} \mathrm{~Pa}$), what is the vertically averaged temperature difference between the equator and pole assuming that ω_{r} depends only on pressure? The planetary radius is $a=6100 \mathrm{~km}$, and the gas constant is $R=187 \frac{\mathrm{~J}}{\mathrm{kgK}}$.

