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How to model the evolution of the polluted PBL?
Exploring a new approach
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1. Introduction
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Motivation

● Cities of Poland often experience a carbon-based 

pollution, concentrated mainly in the PBL

● The PBL diurnal cycles and its evolution affects the 

aerosol spatial distribution and therefore influences the 

radiation transfer

● Our group collected a lot of data concerning the 

radiation fluxes and aerosol concentration in the PBL

Idea: Let’s try to join a model describing the PBL 

evolution and the radiative transfer model
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fig. 1 - The panorama of Krakow, Poland on 29th Nov 2019. Taken 
from the deck of an observation balloon located near the Wawel 

Castle



Scientific motivation

● There exists the feedback loop between 

the height of the planetary boundary layer 

(PBL) and the concentration of absorbing 

aerosols

● When a decreasing aerosol structure is 

present, the heating effect strengthens 

vertical convection

● When an inverse aerosol structure is 

present, the heating effect facilitate the 

formation of temperature inversion
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fig. 2 - Schematic diagrams describing aerosol–PBL interactions 
when decreasing and inverse aerosol structures are present[1].



What is Polluted PBL?

Planetary Boundary Layer, in which there is a non-zero concentration of absorbing aerosol.

Other descriptions found in literature:

● All-sky conditions

● Aerosol-filled PBL

● PBL with aerosols

● Avoiding directly referring to it and insead using ‘Aerosol-PBL interactions’ (API).

● PBL
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2. Eddy Diffusivity/Mass Flux scheme
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What is the EDMF 
model?
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● Eddy Diffusivity: addressing 
downward fluxes

● Mass Flux: addressing the 
limitations of the ED. 
Introducing a strong thermal 
updraft motion

fig. 3 - The simplistic drawing depicting the EDMF 
framework[1]



The core idea behind EDMF
In the Eddy diffusivity scheme, normally we would have:
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Where K is eddy diffusivity coefficient. Unfortunately, this approach gives wrong predictions on the top 

of the PBL. In order to solve this, the EDMF scheme proposes a following decomposition:

where a
u
 is a small surface area, much smaller than the model domain. This surface is occupied by a 

strong thermal updrafts penetrating the top of the PBL.

(1)

(2)



The core idea behind EDMF

We can further simplify by:

● taking into account that a
u 

<< 1

● approximating θ
e
 by its mean value

● defining mass flux M = a
u
(w

u
 - w)
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(2)

(3)



The core idea behind EDMF

Finally, we plug back the original eddy diffusivity scheme and get:
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We can now plug it in into the time evolution of the scalar field 𝜙[2] and get the final prognostic 

equation in the EDMF framework.

(3)

(4)



Equations in the EDMF with TKE closure (EDMF-TKE)

The prognostic equation for a scalar field 𝜙[2]:
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The additional prognostic equation for TKE closure[2]:

+ additional equations for K, M, D, F, 𝜙
u
 etc.

(5)

(6)



Short description of the implementation

● Written fully in MATLAB

● The model operates in one dimension

● The spatial range: [0; 4] km, the spatial resolution: 20m

● The temporal resolution: 1 min

● Modelling the dry conditions

● The clear-sky case (with the aerosol present)

and other, less relevant settings…
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3. LaFuLiou radiation transfer 
model
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LaFuLiou (Ed4-LaRC-FuLiou) radiation transfer model
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● developed in NASA Langley Research Center

● Uses the δ-four-stream approach which is a natural extension of the popular 

two-stream radiative transfer model commonly used in atmospheric sciences

● Uses the parameterization proposed by Fu, Liou and Ackermann[4] which proves to be 

relatively accurate and not much more complex
● The legacy code in fortran works relatively fast
● The fortran solver was embedded in the MATLAB shell to make it more user friendly
● Is available for everyone on github*

*given that you have tools and are able to compile multi-file fortran code 



What parameters were used?

● Spectral resolution: 6 short wave and 12 long wave bands

● Spatial resolution: 78 levels from 0 to 100 km above the ground

● Near the ground (>600 hPa) the grid is denser. In the range [0; 4] km the spatial resolution 

is 80m

● The clear-sky case (with the aerosol present)

● The sun position was calculated for a user defined DOY and location

and other, less relevant settings…
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4. EMDF-TKE/LaFuLiou Coupling
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How were these two models combined?
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fig. 4 - The block diagram showing how two models were joined together in one time loop and how they 

exchange data



Initial profiles: Potential temperature and Heating rate
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fig. 5a - An example of the model output: evolution of the 
potential temperature with time

fig. 5b - An example of the model output: The evolution of 
the heating rate with time



Additional remark no. 1: The extinction suppression
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fig. 6 - An example of extinction profile. Dashed line denote 
profile at the end of the simulation.

The extinction profile was calculated as follows:

with the normalisation condition:

or after the integration:

(7)

(8)

(9)



Additional remark no. 2: The scattering enhancement factor
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fig. 7 - An example of extinction profile after the scattering 
enhancement correction.

The extinction profile was additionally multiplied 
by:

Where ɣ is the scattering enhancement coefficient 
and RH

REF 
is the reference relative humidity for 

which the ɣ was derived experimentally.

In our simulations: 
● RH

REF
 = 0 

● ɣ = 0.5

(10)



5. Results
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Polluted PBL evolution under different pollution levels.
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fig. 8a - The evolution of the PBL temperature with time fig. 8b -  The evolution of the PBL temperature with time



Polluted PBL evolution under different pollution levels.
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fig. 9a - The evolution of the PBL temperature with time fig. 9b -  The evolution of the PBL temperature with time



Polluted PBL evolution under different aerosol compositions
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fig. 10a - The evolution of the PBL temperature with time fig. 10b -  The evolution of the PBL temperature with time



Polluted PBL evolution under different aerosol compositions
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fig. 11a - The evolution of the PBL temperature with time fig.11b -  The evolution of the PBL temperature with time



Additional remark no. 3: Explaining additional parameters
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fig. 12 - Snapshot from the end of one of the 
previous animations.



Additional remark no. 3: Explaining additional parameters
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fig. 12 - Snapshot from the end of one of the 
previous animations.



Additional remark no. 3: Explaining additional parameters
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fig. 12 - Snapshot from the end of one of the 
previous animations.



The PBL Height vs Aerosol optical depth
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fig. 13a - The PBLH vs AOD.
The extinction suppression: 0.1 km



The PBL mean temperature difference vs Aerosol optical depth
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fig. 14a - The PBL mean temp. difference vs AOD.
The extinction suppression: 0.1 km



The PBL Height vs Aerosol single scattering albedo
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fig. 15a - The PBLH vs SSA.
The extinction suppression: 0.1 km



The PBL mean temperature difference vs Aerosol single scattering albedo
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fig. 16a - The PBL mean temp. difference vs SSA.
The extinction suppression: 0.1 km



5+. Bonus - The extinction 
suppression
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Additional remark no. 4: The extinction suppression H
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fig. 17 - Examples of extinction profiles. Dashed lines 
denote profiles at the end of the simulation. ‘x’ denotes the 

PBL top

The extinction profile was calculated as follows:

with the normalisation condition:

or after the integration:

(7)

(8)

(9)



PBL Evolution under different pollution levels
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fig. 18a - The evolution of the PBL temperature with time.
SSA = 0.8, H = 1 km

fig. 18b - The evolution of the PBL temperature with time. 
SSA = 0.99, H = 1 km



PBL Evolution under different aerosol compositions
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fig. 19a - The evolution of the PBL temperature with time.
AOD = 0.1, H = 1 km

fig. 19b - The evolution of the PBL temperature with time. 
AOD = 1.0, H = 1 km



The PBL Height vs Aerosol optical depth
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fig. 13a - The PBLH vs AOD.
The extinction suppression: 0.1 km

fig. 13b - The PBLH vs AOD. 
The extinction suppression: 1 km



The PBL mean temperature difference vs Aerosol optical depth
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fig. 14a - The PBL mean temp. difference vs AOD.
The extinction suppression: 0.1 km

fig. 14b - The PBL mean temp. difference vs AOD.
Case for the extinction suppression: 1 km



The PBL Height vs Aerosol single scattering albedo
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fig. 15a - The PBLH vs SSA.
The extinction suppression: 0.1 km

fig. 15b - The PBLH vs SSA.
The extinction suppression: 1 km



The PBL mean temperature difference vs Aerosol single scattering albedo
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fig. 16a - The PBL mean temp. difference vs SSA.
The extinction suppression: 0.1 km

fig. 16b - The PBL mean temp. difference vs SSA.
The extinction suppression: 1 km



6. Summary
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● The coupled model is relatively fast: 6 h of simulation with 1 min time step took about 

1 min to run on a standard personal PC

● Output suggests:
○ Non-absorbing aerosol and low amounts of aerosol have a small impact on the PBLH and the 

temperature difference

○ The more absorbing the aerosol, the higher the temperature of the PBL

○ The more polluted the PBL the higher its temperature

● The extinction profile suppression effect: 
○ Low suppression → Aerosol above the PBL → Smaller PBLH, Lower Temperature

○ High suppression → Aerosol only in PBL → Higher PBLH, Higher Temperature
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Summary



● Implementation of a better surface model

● Improvements of the PBLH calculation

● Adding a faster way of data exchange between the MATLAB Shell and Fortran solver

● Verifying the model with experimental data

● Maybe (?) refactoring the Fortran solver. Update from Fortran 77 and Fortran 90 to 

Fortran 2018

● Providing more user friendly interface
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Further possible improvements 
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fig. 1 - The panorama of Krakow, Poland on 29th Nov 2019. Taken from the deck of an 
observation balloon located near the Wawel Castle


