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Introduction
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Onset of turbulence - transition

▪ The onset of turbulence

▪ Boundary layer transition to turbulence
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Inertial Forces

Viscous Forces

Transition region Turbulence
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Appearance of turbulence
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Model equation – Navier-Stokes

▪ Navier-Stokes equation – one of the 6 unsolved millennium problems of mathematics
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To-date the “best model for turbulence”!
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▪ Navier-Stokes equation – one of the 6 unsolved millennium problems of mathematics

6Dep. Mech. Eng.  |  Chair of Fluid Dynamics  |  Prof. M. Oberlack 14.10.20

To-date the “best model for turbulence”!
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Length scales in turbulence

▪ Length scales / Kolmogorov theory

▪ Smallest scale: Kolmogorov length scale

▪ Largest scale: Integral length scale

▪ Length scale ratio:
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Brown & Roshko 1974
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Computational cost of turbulence

▪ Degrees of freedom (DOF)

▪ Time scale ratio

▪ Reynolds-scaling of computational cost
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Computational Cost A380

▪ Chord Reynolds number

▪ According to Moor’s law / Kryder’s law
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Full Navier-Stokes simulation for A380 about 4 decades away! 
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Turbulence closure problem

▪ Statistics of turbulence ▪ Reynolds decomposition
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Unclosed 

Reynolds stress 

tensor

Empirical closure relations needed or considering all higher moments!
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Turbulent scaling laws & log-law

▪ According to Prandtl / von Karman

▪ with wall-friction velocity 

▪ Dimensional analysis
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▪ with
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The log-law of the wall
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Marusic et al. (2013/2016)

There's absolutely no connection to Navier-Stokes whatsoever!
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Brainteaser: a new log-law?

▪ Why is there a log-law in the center?
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Symmetries
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Concept of symmetries
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Analogy between symmetric object and differential equation

▪ Symmetric object (under rotation)

Symmetry of differential equations

▪ Differential equation

▪ Symmetry transformation

▪ Form invariance 

14.10.20
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Symmetry of differential equation
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Example: 1D heat equation

Symmetry transformation: scaling (two parameter)

into heat equation:

14.10.20
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Invariants
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An invariant does not change its functional form under a given symmetry transformation

Example: Scaling of 1D heat equation

Invariants

1)

2)

14.10.20
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Invariant solutions
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▪ Implementing the invariants into the DE leads to a (similarity) reduction

▪ Example: 1D heat equation

▪ Employed as independent and dependent variables into the heat equation

14.10.20
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Symmetry breaking

▪ Specific (boundary) conditions may adjust certain parameters

▪ Boundary condition

▪ Combined with the scaling symmetry

▪ Preserving the form of the BC

remains arbitrary

▪ is symmetry breaking
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Symmetries of Navier-Stokes equations
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Notation

14.10.20
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Symmetries of Navier-Stokes I

▪ Translation in time:

▪ Finite rotation:

Note:

▪

(Flows are not invariant when sitting on a roundabout)
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Symmetries of Navier-Stokes II

▪ Scaling of space:

▪ Scaling of time:

in the limit 
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Symmetries of Navier-Stokes III

▪ Galilean invariance:

▪ Comprises two classical cases:

▪ Translation in space:

▪ Classical Galilean invariance:

▪ A few more ... not relevant here ...
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All symmetries transfer to statistical equations!
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Turbulence and Symmetries
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Statistics of turbulence

▪ Randomness of turbulence

▪ Time average

▪ Probability density function (PDF)

▪ 1. Moment
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Notation of moments
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▪ Instantaneous value

▪ Mean value

▪ Fluctuating quantities

▪ Two-point correlation tensor

(classical notation)

▪ New definition based on

instantaneous velocities

14.10.20
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Statistical moments in turbulence

▪ 1-point moment (mean velocity)

▪ 2-point moment

▪ n-point moment
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▪ Non-linear relations among tensor               ,        and

▪ Unique relation between               ,        and                           we use                !

Relations
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Multi-point moment equation

▪ Multi-point moment

▪ Navier-Stokes equation → Multi-point moment equations / conservation law for moments
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▪ Definition multi-point tensor

▪ Infinite set of non-linear PDEs; coupling among all orders

Multi-point correlation:

Fluctuation approach (classical)
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New statistical symmetry I

▪ Translation in function space:

with          and          arbitrary constant tensors

▪ Key ingredient for log-law, etc. and turbulence models

▪ Defines a measure of non-gaussianity
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New statistical symmetry II

▪ Scaling of moments:

▪ Defines a measure of intermittency

▪ Important for deriving higher order moments

▪ Very difficult to implement into turbulence models

Klingenberg, Oberlack, Plümacher: Physics of Fluids, Phys. Fluids 32, 025108 (2020)
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New statistical symmetry – PDF version

▪ Scaling of correlations/moments

▪ Equivalent symmetry of PDF (LMN-eqn)

▪ Consequences

▪ Mathematically: since      and       are non-negative functions                      (semi-group)

▪ Physically: measure of intermittency
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Symmetry induced scaling laws
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Regions of turbulent scaling laws

▪ Channel flow scaling laws ▪ Brain teaser - “modified“ channel flow
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▪ Pure Poiseuille channel flow @ 

▪ Conducted at SuperMuc, LRZ, Munich, Germany 

▪ Code: LISO (Hoyas & Jimenez, 2006)

▪ Fourier in       and      , compact finite differences in      , Runge-Kutta time-stepper

Channel flow DNS details I

14.10.20
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Channel flow DNS details II
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~ 60M CPU h

14.10.20

HO22 (PRF)
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Specific symmetries for shear flows

▪ Fundamental geometrical assumption for the flow

▪ Related symmetries:

▪ Scaling:

▪ Translation in function space:

▪ Translational invariance in x2 – direction:
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Wall-bounded parallel shear flows

▪ Invariance condition / scaling law equations

▪ are the group parameter of the statistical symmetries

▪ Recall Prandtl / von Karman equation
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Log-region – 1st & higher moments

▪ Symmetry breaking: wall-friction velocity

▪ Solution
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Symmetry reduction
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▪ Multi-point moment equation

▪ Invariants / similarity variables

Symmetry reduction log-region I
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▪ Symmetry reduced infinite multi-point moment equation

Symmetry reduction log-region II
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Scaling laws verification
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Log-region – mean velocity scaling
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Log-region – U1-moments scaling
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Log-region – moments indicator funct.
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Log-region – U2-moments scaling
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Log-region – U3-moments scaling
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Log-region – prefct. scaling of 
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Centre / deficit region

▪ Symmetry breaking quantity unclear

▪ Scale invariance

▪ Invariance condition
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▪ 1st moment / mean velocity

▪ 2nd moment

▪ Moments for

Centre / deficit region scaling laws
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with
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DNS: Centre region 1st & 2nd moment scaling
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WallChannel centre
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DNS: Centre region nth moment scaling
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strongly intermittent!

Value almost zero 
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Centre region nth U2-moment scaling
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Centre region nth U3-moment scaling
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Centre region – prefactor scaling of 
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Solution to the “brain teaser”:

Channel flow with transpiration

▪ Symmetry suggested solution for the centre region

▪ Avsarkisov, Oberlack, Hoyas: J. Fluid Mech. (2014), 746
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Channel flow with transpiration

▪ Vorticity magnitude

▪ Avsakisov et al. J. Fluid Mech. (2014), vol. 746, pp. 99-122.
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Channel flow with transpiration
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Increasing
transpiration



FDY

▪ Basis for the analysis is the H-moment equations

▪ Sets of statistical symmetries have been derived - hidden in Navier-Stokes equations 

▪ Statistical symmetries mirror key properties of turbulence: intermittency and non-gaussianity

▪ They are the key ingredients for classical and new high-moment scaling laws

▪ Statistical symmetries give rise to anomalous scaling

▪ In particular:

⇒ Scaling laws are invariant solutions of the infinite multi-point moment equations and PDF

⇒ Scaling laws can be derived rigorously from symmetries

⇒ Scaling laws are particularly simple in H-formulation

Conclusions
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It was a pleasure being here today

I am happy to take your question

Thank you all for listening

Key related publications:

1. Oberlack, Hoyas, et al.: PRL, 128(2), 024502 (2022)

2. Hoyas, Oberlack, et al.: PRF, 7(1), 014602 (2022)

All data are available @

https://doi.org/10.48328/tudatalib-670 and

https://doi.org/10.48328/tudatalib-658
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