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Overview .&‘(IT

Karlsruhe Institute of Technology

> Forced convective flow
> over homogeneously rough surfaces

> over heterogeneous surfaces

> Mixed convective flow
> flow structures over homogeneous (smooth) surfaces

» flow structures over heterogeneous surfaces

> Roughness modelling for flows with large scale separation
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Heterogeneous surfaces ﬂ(".
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Hajo Dietz, www.nuernberluftbild.de www.bnn.de
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Nikuradse Diagram for ﬂ(IT

homogeneous roughness in internal flows
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K. Nikuradse (1933) Stromungsgesetze in rauen Rohren, VDI-Forschungsheft 361
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Influence of roughness on TBL velocity profile ﬂ(".
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function

for fully rough flow conditions
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Flack, K. A., & Schultz, M. P. (2014). Roughness effects on wall-bounded turbulent flows. Physics of Fluids, 26(10), 101305.
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Data Generation ﬂ(".

Karlsruhe Institute of Technology

the flow property k. (or AU") has to be determined for different rough surfaces

DNS (IBM based) experiments

pressure drop ,measurement” at prescribed flow rate
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KIT

High precision blower wind tunnel
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Friction factor for roughness strips
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What is the drag behavior
of a heterogeneous surface?
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Roughness strips in forced convection ﬂ(".

Karlsruhe Institute of Technology

Experimental set-up does not allow large scale separation
beween roughness height and boundary layer thickness
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submerged sandpaper strips
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Drag of roughness strips ﬂ(".
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Spanwise inhomogenous roughness ﬂ(".

Karlsruhe Institute of Technology

counter-intuitive flow rate distribution

EXPERIMENTAL INVESTIGATION
ON SECONDARY CURRENTS
IN THE TURBULENT FLOW
THROUGH A STRAIGHT CONDUIT*

J. O. HINZE
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Fig. 1. Distribution of isovels.
heterogeneous roughness Hinze Appl. Sci. Res. 1973
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Mean flow field above roughness strips ﬂ(".

Karlsruhe Institute of Technology
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Turbulent Secondary Motions ﬂ(".

secondary flow of Prandtl‘s second kind in forced convection

Smooth Rough Smooth
instantaneous flow field time-averaged flow field

Stroh et al. JFM 2020; Schafer et al. JFM 2022
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Simplified scenario in literature:

ridge type ,roughness* | ﬂ(IT

Karlsruhe Institute of Technology

streamwise aligned ridges induce turbulent secondary motions similar to
the flow phenomena above roughness strips

~—— experiment —— DNS U/U;

velocity field
in channel cross section

temperature field
in channel cross section

, Stroh et al. IJHFF 2020
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Relevance in convective boundary layers? ﬂ(".

mixed convection over smooth surfaces (unstable thermal stratification)

| temperature
‘ field

i

NASA earth observatory ! - r
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Relevance in convective boundary layers? ﬂ(".

mixed convection over smooth surfaces (unstable thermal stratification)

9 convective
rolls

temperature
field

NASA earth observatory & o b, r-..n.,-,_;.._l.q_.t_._""_'
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Mixed convection in turbulent channel flow :\!(IT
with smooth walls

instantaneous temperature fluctuations in channel center plane (view from top)

P s L N S o S ve Il TS
BN ) ® TN - «
$ —A e ht Frgb"" .’i‘ . ' !

i i 21 ' T r "f "",l- - oo L% "_ = LA i [5 ¥ r & 1 -‘\‘ O i s
‘rl o0y o E: oy "‘1:‘ & ‘KL e 1 f1- . "% Ma o
- ‘ - .‘.‘ 4;\ —A. : _ ! "'.
W A A ; - . L
e _._'Ti-‘ “\L‘ { q‘lk‘ t _’h . ! aclh . . o s o !‘-—-" t‘ 'l o
forced convection mixed convection N—7T natural convectlon
Ri=0 i or § roll to cell large Ri or °
small Ri or °/, transition 9 /1

o — boundary layer thickness

L — Obukhov length scale
Schafer et al, JFM 2022, accepted
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Mixed convection in turbulent channel flow

with smooth walls ﬂ(IT

Karlsruhe Institute of Technology
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Convective rolls vs turbulent secondary motion ﬂ(IT
N X9 OO OO
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convection rolls turbulent secondary flows
smooth channel walls structured channel walls
mixed convection forced convection

What is the influence of structured surfaces in mixed convection?
(DNS study)
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Investigated Parameter Space ﬂ(".
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Impact of ridges on convection rolls ﬂ(".

instantaneous
temperature fluctuations
in channel center plane

surface ridges delay
emergence of rolls
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In-plane motion
and streamwise velocity distribution

Ri, = 0.0

KIT

Karlsruhe Institute of Technology

Riy = 0.024

S =26

S=055] [5=25]
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Global flow properties over ridges
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buoyancy induces larger increase of
heat transfer than of momentum
transfer

more ridges - relative importance of
momentum transport increases

formation of rolls (indicated by
increase in St/c;) is delayed by ridges

additional drag by ridges is important
feature

Schafer et al, JFM 2022, accepted



From convection rolls to convection cells? ﬂ(".
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convection cells occur earlier and have a preferred orientation on anisotropic structured surface
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The challenge of scale separation A(IT

Ridges have non-negible height compared to boundary layer thickness
—> Is the height critical?
- How to run DNS with ,large” scale separation?

168 Chung et al., JFM 847, 2018

. g -
von Deyn et al. ExiF 2022 o \jLA— Neuhauser et al. JFM 2022
Stroh et al. [JHFF 2020

.ridge type“ roughness ,Strip type“ roughness
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Slip length model ﬂ(".

Karlsruhe Institute of Technology

turbulent velocity profile
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Slip length model ﬂ(".

Karlsruhe Institute of Technology

turbulent velocity profile
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simple model for rough surface
Neuhauser et al. JFM 2022
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Turbulent secondary flow over rough strips ﬂ(".

Karlsruhe Institute of Technology
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Isovels {u)/Tr

spanwise slip length roughness model

easy to implement, captures laminar behavior correctly

reproduces flow phenomena of rough strips

model is too simplistic to model fully rough flow state

(same holds true for ridge type roughness model)

enables parameter studies Neuhauser et al. JEM 2022
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Effect of transition between ﬂ(l'l'
smooth and rough domains

formation of turbulent secondary flow does not depend on gradient in boundary condition

Neuhauser et al. JFM 2022
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Final remarks .&‘(IT

Karlsruhe Institute of Technology

» today's state of the art for roughness predictions rely on fully rough flow state
known for homogeneous roughness

» drag prediction for inhomogeneous surfaces is one of the great challenges in
roughness research

» lateral (spanwise) heterogeneity can induce large scale turbulent secondary
motions visible in the mean (!) flow field, resemblence of convective rolls to
some extend

» two literature models for roughness strips: ridge type and slip type

» ridges in mixed convection: convective rolls occur later and convective cells
occur earlier (smaller Ri or /L)
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Future points ..\\‘(IT

Karlsruhe Institute of Technology

> Is the impact of strip type roughness onto mixed convection
comparable to ridge type roughness?

> Relevance of scale separation in general

> What happens if different surface textures have different heat
emissions?

> To which extend is the symmetric set-up of the channel flow DNS
comparative to (atmospheric) boundary layer conditions?
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Related publications @ ISTM '-\\J(IT

The effect of spanwise heterogeneous surfaces on mixed convection in turbulent channels
Schéfer, K.; Frohnapfel, B.; Mellado, J.P.
2022. Journal of Fluid Mechanics, accepted

From drag reducing riblets to drag increasing ridges
Deyn, L. H. von; Gatti, D.; Frohnapfel, B.
2022. Journal of Fluid Mechanics, accepted

Simulation of turbulent flow over roughness strips
Neuhauser, J.; Schéfer, K.; Gatti, D.; Frohnapfel, B.
2022. Journal of Fluid Mechanics, 945, Art.-Nr.: A14. doi:10.1017/jfm.2022.536

Modelling spanwise heterogeneous roughness through a parametric forcing approach
Schéfer, K.; Stroh, A.; Forooghi, P.; Frohnapfel, B.
2022. Journal of Fluid Mechanics, 930, A7. d0i:10.1017/{fm.2021.850

Ridge-type roughness: from turbulent channel flow to internal combustion engine
Deyn, L. H. von; Schmidt, M.; Orld, R.; Stroh, A.; Kriegseis, J.; Bohm, B.; Frohnapfel, B.
2022. Experiments in Fluids, 63 (1), 18. doi:10.1007/s00348-021-03353-x
Rearrangement of secondary flow over spanwise heterogeneous roughness

Stroh, A.; Schéfer, K.; Frohnapfel, B.; Forooghi, P.
2020. Journal of Fluid Mechanics, 885, R5. doi:10.1017/{fm.2019.1030

Secondary flow and heat transfer in turbulent flow over streamwise ridges
Stroh, A.; Schéfer, K.; Forooghi, P.; Frohnapfel, B.
2020. International Journal of Heat and Fluid Flow, 81, Article N0.108518. doi:10.1016/j.ijheatfluidflow.2019.108518
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