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Aerosol precursors
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Introduction

Aerosol Effective Radiative Forcing (ERF)

From ARG:

ERFari — Effective Radiative Forcing due to aerosol-radiation interactions:
scattering and absorption

ERFaci — Effective Radiative Forcing due to aerosol-cloud interactions:
albedo, LWP, cloud cover
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@ Introduction

ERFaci:

gE—

* First Indirect Effect (Twomey Effect) - Also known as the cloud albedo effect.
It describes how an increase in aerosols leads to a larger number of smaller cloud
droplets (for a constant cloud water content), which increases the cloud's
reflectivity (albedo) and reflects more solar radiation back to space.

« Second Indirect Effect (Albrecht Effect) - Also known as the cloud lifetime and
morphology effect. It describes how the smaller droplets produced by more
aerosols are less efficient at colliding to form raindrops, which suppresses drizzle

- and extends the life and fractional coverage of the cloud:

- LWP Adjustments: Can be positive (precipitation suppression) or negative (if
smaller droplets lead to faster evaporation and entrainment of dry air).

- Cloud Fraction (CF) Adjustments: is negative when aerosols increase cloud
lifetime or areal coverage by suppressing precipitation, and positive when
aerosol-enhanced evaporation and entrainment cause clouds to break up and
cover less of the sky.




Introduction

ERFaci:
Radiative
Adjustment What changes sign Complexity Uncertainty Timescale
Twomey effect Droplet number — (cooling) Simple Low Instantaneous /
(INg) hours

2 —
c
g LWP adjustment Liquid water + Competing Moderate Hours—days
» path processes
-
T =
g Cloud-fraction Cloud area/ + Nonlinear, High Hours—days
8 (CF) adjustment lifetime regime-
5 — dependent

High uncertainty arises from
difficulties in making accurate
observations



Introduction
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Aerosols, Cloud Microphysics, and
Fractional Cloudiness

BRUCE A. ALBRECHT  (1989)

Likewise, the relatively complicated hori-
zontal variations in cloud structure that are
often observed in visible satellite images of
marine stratocumulus (Fig. 2) often have a
lifetime of several hours and in many cases
are maintained by variations in the micro-

physical structure of the clouds and not

variations in the temperature, moisture, and

wind.

Aerosols as a key control of
horizontal variability!

30 Oct 2022 17 ZOZ NOAA/NESDIS/STAR GOES-18 - GEOCOLOR Composite - Western US Seaboard




@ Focus of the study

The diurnal susceptibility of subtropical clouds to aerosols:

SW outgoing radiation| F' (N.,LWP,, f.) = Fyuo A(N.,LWP,, f.)

\
\

o drt aF1 . 9F'  dInLWP, aFt  df,
Susceptibility: 51 V"= 3N, 9InLWP, dInN, 3f. dInN,
£ 'H-—-.v.-—-“ b — ) " . g
,," Twomey Effect (Sn) LWP adjustment (Spwp) Fraction adjustment (S f)

/

Cloud droplet number concentration

Region: Subtropical-tropical

Timescale: Hourly to daily (diurnal) Scientific gap: To our knowledge, such a

System: Cloud—aerosol interactions decomposition has not yet been reported in
Perturbation: Aerosol variations the literature.



Experiment design

Lagrangian approach:
an air mass moving along
a 6-day trajectory

o Perturbation scenario:
156 Reference: clean air scenario

| , | | Perturbation: polluted air scenario
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Experiment design

Mumber Concentration from Agua-MODIS October 6
85°W 80°W T5°W J0°W B5"W B0 W 35°W

10°5 10°5

Lower Nc

20°5 20°5

2575

2575

3075 F0°5




Grid-mean
LWP

Cloud-top
height

Cloud/rain
(polluted)

(a)

5°S

10°S

15°S

20°S

110°W

100°wW 90°W

(d) ,|N200 (Polluted)

Height (km)

Cloud water
Rain water

Days Since Start

80°W

[« GOES-16

Microwave
= N200 (Polluted)
—— N100

N50

"whv Droplet number ; Results: Overview

. |- (Polluted
w0\ concentration =we
» ey [= = N25 (Pristine) |
E 300 \Q:\ o |
- \}\ . .
200 W\ T mmmmmmme oo polluted scenario (N200; perturb.)
) SO
100 %“:‘?:: —————————————————————
0}9 \:; ___________________

® T ~RaTtogsTooiITca&gcoLA pristine scenario (N25; reference)

Tropics

Cloud fraction

Cloud optical
thickness

Cloud/rain
(pristine)

Time (d)



Grid-mean
LWP

Cloud-top
height

Cloud/rain
(polluted)

' Droplet number
wh\  concentration

10°S B
15°S

20°S

110°wW 100°wW 90°W 80°W

Days Since Start 290 ¥~ Subtropics

*  GOES-16

Terra

O Aqua
= = N200 (Polluted)
— — N100

= = N25 (Pristine)

(bgoo GOES-16 (8) = X\
"\2150
2 LES reconstructs the PBL in a

highly realistic manner -> credible

(c
: source for process-level studies
- l V¥ VvV v
0 0
d) . | N200 (Polluted) A (i) ristine
(’é)z t " ' ( ! 5 | N25 (Pristine)
= §1.5
5 £
*05 | [—cloud water £ 0.5
——— Rain water
0 : T T 0
0 1 2 3 - 5 6 0 1 2 3 4

Results: Overview

Cloud fraction

Cloud optical
thickness

Cloud/rain
(pristine)



@ Results: Sensitivity calculations

Outgoing SW: F'(N.,LWP,, f.) = FyuoA(N,,LWP,, f.)

Total albedo: A= — fo)agur + fcAc Clear-sky and cloudy

osurf(1 — acld)z

11— Usurflcld

—Tc Meador and Weaver (1980)
ViTe +(Bo — Vito) | 1 —exp| — .
Ko (Dependence on solar zenith angle)

Cloud albedo: Ac = acd +

Stevens et al. (1984)

onld =
el 1+ 9yt

Cloud optical thickness: 7. =0.2 NC”3LWPCS/6'
Hoffman et al. (2023)



@ Results: Sensitivity calculations

Sensitivity analysis in phase space
State vector:

et () = (N (t), LWPE(8), f2(t))

‘} €C Perturbed Trajectory
(higher N_.) -9 ) ) )
/ @ Xpert (1) One-direction perturbation:

AFt = Fp (reference): ?/ __—& .
L } ‘ y ref(t) Xpert(t) p— xref(t) —|— (5N67 0, 0)

- Fup (perturbed)
7

Diagnosed one-direction difference:

AF.(t) = Fr (N (1), LWPI (1), £ (¢))

c

— Fy (NX(t) + 6N, LWPE!(t), f2(t))

For small perturbations:
OF,
ON,

AFT(t) ~ 5Nc

xref(t)




Results: Sensitivity calculations

From N200 trajectory
Sensitivity analysis in phase space From N25 trajectory

A 4

Mean from the two trajectories
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Results: Diurnal susceptibility — partial contributions

6 full diurnal cycles
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Results: Diurnal susceptibility — partial contributions

Composite diurnal cycle
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* Twomey effect: always cooling (as expected).

* Cloud adjustments (LWP, f, (are cooling in the morning but become
warming later in the day.

* LWP adjustment : the strongest warming (around noon).
* Both cloud adjustments act against the Twomey effect in the afternoon.



Results: Diurnal susceptibility — partial contributions

Composite diurnal cycle
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Results: process-level understanding
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Results: process-level understanding

Composite diurnal cycle
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Results: process-level understanding

Composite diurnal cycle
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Results: process-level understanding
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decoupled during daytime
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- Experiences stronger LW cooling at
night

- Experiences similar (or smaller) SW
warming — contrary to suggested
explanation of the collapse



@ Results: process-level understanding

Composite diurnal cycle
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Results: process-level understanding

Radiation Tug of war: Longwave vs Shortwave
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as Infrared Heat
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so strong?

Absorb Solar
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Results: process-level understanding

Radiation Tug of war: Longwave vs Shortwave
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Results: sensitivity experiments

More benefits of the virtual LES lab: process-denial studies.

Idea: What if we run an LES experiment for the Pristine
scenario (N25), but make one particular process interact with
the Polluted component (N200)?



@ Results: sensitivity experiments

What are key controls: Radiation, Autoconversion, or Sedimentation?

Experiment Radiation Autoconversion Sedimentation Description

Ex1 Nooo Nogo Nogo Polluted case

Ex2 N»s N»s N»s Pristine case

Ex3 Nooo Nos Nos Impact of pollution on radiation

Ex4 N»s Nroo Nss Impact of pollution on autoconversion

Ex5 N»s N5 N>o0 Impact of pollution on sedimentation




Very busy slide

Sensitivity experimentresults Differences wrt. pristine case
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process has a smaller, negative,
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@ Results: sensitivity experiments

What are key controls: Radiation, Autoconversion, or Sedimentation?

Experiment Radiation Autoconversion Sedimentation Description

Ex1 Nooo Nogo Nogo Polluted case

Ex2 N»s N»s N»s Pristine case

Ex3 Nooo Nos Nos Impact of pollution on radiation

Ex4 N»s Nroo Nss Impact of pollution on autoconversion

Ex5 N»s N5 N>o0 Impact of pollution on sedimentation




@ Results: sensitivity experiments

What are key controls: Radiation, Autoconversion, or Sedimentation?

Experiment Radiation Autoconversion Sedimentation Description

Ex1 Nooo Nogo Nogo Polluted case
Ex2 N»s N»s N»s Pristine case
Ex3 Nooo Nos Nos Impact of pollution on radiation
Ex4 N»s Nroo Nss Impact of pollution on autoconversion
Ex5 N»s N5 N>o0 Impact of pollution on sedimentation
+ LWP (diurnal) - LWP (constant)
-RWP - RWP
+Entrainment +Entrainment
+Decoupling +Decoupling
MARGINAL STRONG WEAK

Pollution prevents  Pollution makes particles
water from leaving  lighter and less prone to
the cloud layer leave the entrainment layer



Summary

Pristine and polluted scenario simulations; ERFaci decomposed into Twomey
effect, and LWP and cloud fraction adjustments: Their time-dependent partial
impacts were quantified for the diurnal cycle.

Twomey always positive (morning peak); LWP and fc switch sign — ERFaci
super-Twomey in morning (~2x stronger), near-neutral in afternoon.

Precipitation suppression produces thicker, more turbulent clouds —
enhanced LWP — stronger overnight cloud-top entrainment — deeper, drier,
decoupled PBL — mid-day collapse.

Increasing Nc amplifies diurnal cloud variability — morning/afternoon
contrast.

Single LES suite; effects may differ in non-precipitating clouds.



Thank you!

Dziekuje za uwage!



If you want to learn more...

Atmos. Chem. Phys., 25, 15329—15342, 2025 Atmospheric <
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