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On the interplay of tropical clouds,  
humidity and the energy budget 



Drivers of tropical circulation and the energy budget

How the tropics 
respond to forcing 
dominates Earth’s 
climate sensitivity.
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2. Modelling the distribution of 
relative humidity 

3. Microphysical uncertainties in 
global storm-resolving models



Organisation of 
shallow cumulus 

in the trades

(Stevens et al., 2020)
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Figure 5. (a) and (b) same as Figure 2 but for the low-cloud amount derived from MODIS cloud products and the NET
cloud-radiative effect derived from CERES observations. (c) Same as Figure 3 but for daily-mean values of NET CRE
and low-level cloud amount.

change experiments run with the IPSL climate model (Dufresne et al., 2013), EIS always increases with
global warming over the tropical western Atlantic (by 0.1 to 0.7 K K−1 depending on the type of experiment
and model version), whereas Vs does not change in a robust fashion. Assuming that Vs and EIS remain
the main controlling factors of the mesoscale organization of shallow clouds in a perturbed climate, these
projections would suggest a more frequent occurrence of fish or flower at the expense of sugar or gravel with
global warming and thus a larger cloud fraction. This is in conflict with the prevailing idea, based on models
which do not account for mesoscale organization, that low-cloud amount will reduce in response to rising
SST (Klein et al., 2017). In our analysis, SST does not appear to be a strong controlling factor of the cloud
mesoscale organization on daily and interannual timescales (Table S2), but it remains an open question
whether it could play a bigger role in climate change. In either case, better understanding the extent to
which the mesoscale patterning of clouds affects their response to warming appears relevant to establishing
confidence in how clouds respond to warming as a whole.

Future investigations of this issue using numerical models that predict explicitly these different cloud pat-
terns and are able to reproduce the relationships discussed in this paper should help determine how much
the cloud organization is sensitive to SST, and how much it could affect the magnitude and even maybe the
sign of the change in low-cloud amount. This should fill an important gap in our understanding and our
assessment of low-cloud feedbacks under climate change.
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Observational evidence for ubiquity of shallow mesoscale circulations

Shallow mesoscale 
circulations are 
thought to play an 
important role in 
cloud organization, 
but they have not 
been observed yet.

(This study: George et al., accepted; EUREC4A: Stevens et al., 2021)



Coupling of moisture and clouds to shallow circulations

- Mesoscale variability in divergence is five-
fold the mean value. 

- Modulation of cloud-base moisture affects 
drying efficiency of entrainment, yielding 
moist ascending branches and dry 
descending branches.

(George et al., accepted)

What drives shallow mesoscale circulations? 
- condensational heating (e.g., Bretherton and 

Blossey, 2017, Janssen et al., under review) 
- radiative cooling differences (e.g., Wing and 

Emmanuel, 2014, Naumann et al, 2019) 

- sea-surface temperature differences (e.g., 
Foussard et al., 2019, Naumann et al, 2019) 

- precipitation (e.g., Bretherton and Blossey, 2017, 
Radtke et al., 2022)



Spatial patterns of precipitating shallow convection

(This study: Radtke et al., 2022; EUREC4A: Stevens et al., 2021; Poldirad: Hagen et al., 2021)

Poldirad: 
- mean precipitation, area fraction and intensity 
- rain cell segmentation to identify number of cells, 

their size and organisation 
(Photo by F. Batier)



(Radtke et al., 2022)

Does spatial patterning matter for precipitation characteristics?

Jule Radtke et al. 9

tance to the nearest neighbour is taken into account (LNN). Fig. 7a-b shows how these two properties, LA and LNN,
varied during EUREC4A and that LA and LNN in the example scene are typical observed distances. Most frequently
a LA around 65 km and LNN around 14 km were observed. The distribution of LNN is unimodal and skewed towards200

higher LNN (Fig. 7b). LNN varies only in a narrow range, that is, rain cells have a typical distance to their neighbouring
cell. The distribution of LA shows a less marked peak and is skewed towards small LA (Fig. 7a). Possibly, cold pools
(e.g. visible in Fig. 2 with the typical arc-shaped pattern) smooth and widen the distribution of LA by their varying
strength and extent.

205

If the rain cells in the example scene were randomly distributed, LA would be around 90 km and LNN around 19.5 km.
That is, the observed distances are shorter than the random distances and the scene in Fig. 2 shows a clustered state,
which is classi�ed by an IORG of 0.67 (Fig. 2). As indicated in Fig. 7a-b and shown in Fig. 7c, the rain cells arrange-
ment is clustered in almost all scenes (IORG > 0.5). This was similarly found in studies of deep convection (e.g. Brueck
et al., 2020; Pscheidt et al., 2019). That precipitation �elds are usually clustered �ts with the idea that precipitation210

processes develop in cloud complexes with several clustered updrafts and which represent inhomogeneities. Precipi-
tation does not occur randomly but due to inhomogeneities in a �eld and therewith clustered.

F IGURE 7 Relative frequency of a) mean distance between all possible pairs of cells LA, b) mean distance
between nearest-neighbour cells LNN and c) the IORG for all, dry (W < median (W )) and wet scenes (W >

median (W )) with median (W ) = .

We now analyse how the cells’ spatial arrangement, cell number and size covary by analysing the IORG in the S-N
phase space spanned before (Fig. 8a). The analysis reveals three main �ndings. First, few cells (small N ) are more clus-215

tered (higher IORG) than many cells (high N ). For a given S , IORG decreases with N . That is, clustering and cell number
are negatively correlated (R = -0.51, Fig. 4). Brueck et al. (2020), noting the same relationship, point to thermodynamic
considerations that can help explain this behaviour. When conducting idealized simulations, it can be seen that in a
scene starting from homogeneous thermodynamic conditions, many randomly distributed cells appear, whereas in
the presence of inhomogeneities, the number of cells in a scene can be limited. By subsampling the scenes into four220

composites representing the four corners of the S-N phase space (Fig. 9) to show the variability in each composite,
we further note that scenes with few cells have a wider range of possible spatial arrangements than scenes with many
cells (Fig. 9c). Especially few and small cells, indicative of little precipitation, occur in a variety of spatial arrangements,
which �ts the subjective analysis of radar and satellite imagery during the RICO campaign (Rauber et al., 2007).

225

Second, the co-variability of clustering with cell size are more complex than with cell number. While IORG increases
with S in scenes with a small N , in scenes with a large N , IORG decreases with S (Fig. 8a). Thus, overall, the correlation

Dry environments are associated 
with more strongly clustered cells, 
which is similar to deep convection.  
(Bretherton et al., 2005; Tobin et al., 2012) 

Weak correlations indicate that 
organisation of rain cells is of 
second order importance for 
precipitation characteristics.



(Radtke et al., 2022)

Can clustering maintain precipitation in dry environments?

Clustering may be important for high precipitation intensities 
and to maintain precipitation amounts in dry environments.



Organisation affects rain production and sedimentation

(Radtke et al.,  
in preparation)

=
production of rain
cloud water path

⋅
precipitation

production of rain

= ϵconv ⋅ ϵsed

(Langhans et al., 2015)

ϵp =
precipitation

cloud water path

Precipitation efficiency 
varies with mean 
precipitation. The effect 
of organisation is minor.

As organisation strengthens, 
cloud condensate is less 
efficiently converted to rain, but 
rain sediments more efficiently.



(Radtke et al., in preparation)

Organisation affects conditions of rain production

Increasing contribution from accretion and a more 
humid environment lead to less evaporation.

As organisations strengthens, rain 
already forms in weaker updrafts.
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How much of the tropical 
heat budget is controlled by 
circulation and dynamics as 
compared to microphysical 
and turbulent processes?

reduced number of poorly 
constraint processes: 

microphysics 
turbulence

Simulating the tropical heat budget at kilometre-scale resolution



Distribution of free-tropospheric humidity in a multi-model ensemble
3.1.2 Relative humidity

Figure 2: Mean vertical profiles over tropical oceans and inter-model spread of relative humidity
(RH) in the DYAMOND ensemble. Tropical mean RH is shown as absolute values (a) and as
deviation from ERA5 (b). The colour coding for the models is the same as in Figure 1. Overall,
the C-shape of the tropical RH profile is captured in all models. RH in the DYAMOND models
tends to be higher than in ERA5 in the lower troposphere and lower than in ERA5 in the free
troposphere. (c) The standard deviation of tropical mean RH (�(RH)) in the DYAMOND
enseble (solid line) is largest around the top of the shallow cumulus layer and in the upper
troposphere. Compared to the CMIP5 AMIP ensemble (dashed line) the inter-model spread is
reduced by about a factor of two in most altitude regions. For a fairer comparison only one
August was selected from the AMIP run.

3.2 Moisture space

Figure 3: Distribution of integrated water vapour (IWV) over tropical ocean regions in the
DYAMOND models and ERA5. The largest inter-model di↵erences occur at the moist end of
the IWV distribution. The tropical mean IWV values are indicated by cloured bars on the
bottom of the figure.
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The inter-model spread of RH in GSRMs is 
about half as large as in the AMIP ensemble.
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DYAMOND 
CMIP5 AMIP

(This study: Lang et al., 2021; DYAMOND ensemble: Satoh et al., 2019, Stevens et al., 2019)

Figure 4: Multi-model mean distributions of di↵erent quantities in moisture space, i.e. sorted
from the dryest column on the left to the moistest column on the right and averaged over 50
bins of equal size. (a) RH varies little in the boundary layer, but increases with IWV in the
free-troposphere. (b) Vertical velocity increases from dry to moist columns and changes from
subsidence to rising motion around the 90th percentile of IWV. (c) IWV (black) increases
linearly with its percentiles except from the dryest and moistest 10 percentiles, whereas the
increase in SST (blue) is steepest in the dryer columns and becomes flatter in the moister
columns. All-sky OLR (red) increases slightly in the dryest 30 percentiles, then decreases in
an exponential manner towards the moistest columns.

4

Figure 5: Standard deviation of RH in the DYAMOND models in moisture space. (a) The
absolute standard deviation �(RH) increases from dry to moist columns in the mid troposphere
and is constantly large in the upper troposphere. (b) Normalizing �(RH) with the multi-model
mean RH shows that the largest relative inter-model di↵erences occur on the dry end of
moisture space.

3.3 Physical processes controlling the relative humidity anomalies

3.3.1 Model anomalies in RH transport tendencies

Figure 6: Multi-model mean RH tendencies due to (a) vertical, (b) horizontal and (c) total
transport by the resolved circulation in moisture space.
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Effect of humidity spread on clear-sky outgoing longwave radiation

(Lang et al., 2021)
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3.3.1 Model anomalies in RH transport tendencies

Figure 6: Multi-model mean RH tendencies due to (a) vertical, (b) horizontal and (c) total
transport by the resolved circulation in moisture space.
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The remaining humidity differences still cause a 
non-negligible (∼1.2 Wm−2 ) spread in tropical 
mean clear-sky outgoing longwave radiation.

x



Parameterizations are major source for relative humidity spread

Tropical relative 
humidity in a global 
storm-resolving 
model is robust to 
changes in model 
resolution and 
parameterizations.

(Lang et al., in review)



Which physical processes control the humidity distribution?

simulated RH difference

last-saturation model:  
(e.g., Pierrehumbert et al., 2006;  
Sherwood et al., 2010)

(Lang et al., in review)

Mid-tropospheric humidity differences are well-explained by differences in 
their last saturation points, except for a change in the microphysics scheme.

reconstructed RH difference 
due to last-saturation model

effect of moisture sources and 
sinks after last saturation
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How do microphysical choices affect the energy budget of the tropics?

global simulation with ICON at 5 km 
grid spacing 
- with a one- and a two-moment 

microphysics scheme (Baldauf et al., 
2011; based on Seifert and Beheng, 2006) 

- perturbing one parameter of one 
hydrometeor category

1mom 
1mom-rain 
1mom-ice 
1mom-snow 
2mom 
2mom-rain 
2mom-ice 
2mom-snow

8 simulations:



cloud water cloud ice rain snow graupel hail all condensatecloud fraction
tropical mean

The two-moment scheme less easily converts ice to snow

Runs differ in how they distribute water among the hydrometeor categories 
but their mean cloud cover or total condensate is rather robust.



Cloud ice occurs in higher concentrations in the two-moment scheme

We expect an effect on 
the heat budget because 
in ICON ice is radiatively 
active while snow is not.

cloud water

cloud ice

rain

snow

graupel



Radiation balance at the top of the atmosphere (TOA)

While microphysical effects largely balance for the 
net TOA flux, differences of a few W m-2 remain.

Table 1: Top of the atmosphere and surface energy balance. Bold values of the 2mom scheme are

absolute values. Normal font indicates differences to the 2mom run. All values are in units of W m�2.

For the net, downward fluxes are defined negative, so that at TOA net = SW# - SW " - LW "> 0 W m�2

there is more energy entering the atmosphere than is leaving it. At the surface net = LW # - LW " + SW

# - SW " + LH + SH> 0 more energy enter the surface than leaves it.

TOA surface

SW " LW " SW# net LW " LW # SW " SW # LH SH net

global

2mom 113.04 236.61 349.67 0.02 390.27 343.38 25.44 184.02 -91.54 -25.37 -5.22

1mom -7.57 2.93 0. 4.65 -0.76 -3.02 1.36 8.70 1.73 1.07 7.87

2m-rain -6.15 1.05 0. 5.10 0.19 -1.47 0.65 7.58 2.32 2.54 10.12

2m-ice -1.45 2.61 0. -1.16 -0.03 -0.28 0.12 1.55 -0.59 -0.38 0.20

2m-snow 0.20 -0.16 0. -0.04 0.14 0.25 -0.06 -0.27 -0.68 -0.12 -0.90

1m-rain -5.20 2.42 0. 2.78 -0.91 -2.56 1.09 5.78 -0.14 -0.44 2.46

1m-ice -10.21 8.77 0. 1.44 -1.14 -4.29 1.71 11.64 2.28 0.83 9.87

1m-snow -9.48 3.81 0. 5.67 -0.95 -3.94 1.68 10.9 1.54 0.78 8.55

tropics

2mom 104.51 258.01 412.10 49.59 449.01 393.75 24.94 237.66 -124.4 -33.19 -0.14

1mom -7.44 3.84 0. 3.60 0.33 -0.84 0.64 7.58 2.97 1.04 9.79

2m-rain -7.89 1.72 0. 6.17 0.24 -2.05 0.84 9.74 5.15 3.42 15.18

2m-ice -2.54 4.05 0. -1.51 -0.05 -0.53 0.23 2.68 -0.56 -0.28 1.13

2m-snow 0.46 -0.37 0. -0.09 0.04 0.16 -0.06 -0.58 -0.70 -0.20 -1.31

1m-rain -3.64 3.07 0. 0.57 0.00 -0.16 0.20 2.92 -0.69 -1.21 0.67

1m-ice -11.56 12.08 0. -0.52 0.15 -2.03 1.03 12.04 3.06 0.63 12.52

1m-snow -9.22 4.88 0. 4.34 0.26 -1.18 0.80 9.42 2.50 0.72 10.4

2

SW
↑

LW↑

TOA = SW↓ - SW↑ - LW↑



Decomposition of radiative changes at TOA

LW↑ SW↑

radiative 
change of 
cloudy  
points

radiative 
change of 
clear-sky 
points

radiative 
change due 
to cloud  
cover change

Changes in radiative 
properties of cloudy 
points dominate 
changes in the radiative 
balance at TOA.



On the interplay of tropical clouds, humidity and the energy budget 

Organisation of shallow trade wind convection is of second order 
importance for precipitation amount but affects the pathway to 
precipitation: as organisation strengthens, less efficient conversion 
from cloud condensate to rain is compensated by more efficient 
sedimentation.  

In global storm-resolving models the spread in tropical humidity is 
substantially reduced but still causes a non-negligible (∼1.2 Wm−2) 
spread in tropical mean clear-sky outgoing longwave radiation. 
Sensitivity experiments suggest that parameterizations are the major 
source of relative humidity spread. 

Tropical cloud cover and total condensate are robust to changes in 
microphysical parameters but a shift from ice to snow affects the 
radiative properties of cloudy grid points.

cloud ice


