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Opening remarks

* This is going to be a report on a work-in-progres

* | want to talk about what motivates measurements across an air-sea interface,
how we contribute to do better and what else we can be doing better

* Alarge numer of people contributed to this work thus far

« So far, this research has been hitch-hiking on other projects (NCN funded
Harmonia — Pl Szymon Malinowski, OPUS — Pl Aleksander Pietruczuk, OPUS —
Pl Darek Baranowski), but luckily this is going to change a little bit.

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



Outline

Motivation (skewed towards global tropics)

Limitation of canonical measurements approaches

UAV observations in the lower PBL and across air-sea interface during three ship-borne
campaigns

Outlook ....... or where | want to go with this...

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



Motivation
Earth system and its predictability

Predictability
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LAND/SEA ICE

| Time

Importance of the state of the ocean for weather predictability increases with the lead
time, but there relevant atmospheric processes which are highly sensitive to short term
variations in ocean properties as well!




Motivation

Convection over ocean dependent on short-term SST variations

A
Journal of Advances in Modeling Earth Systems
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On the cumulus diurnal cycle over the tropical warm pool
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Figure 17. Conceptualized forcing mechanisms of the cumulus diurnal cycle—both the *forced” and “active” modes—over the tropical
warm pool. (a) Time-height series of vertical eddy buoyancy flux (cf. Figure 13a; smoothed to emphasize robust features), with large-scale
subsidence indicated by the open arows. (b and c, left) Schematized cloud scenes in the x-z plane at (b) 12L and (c) 21L, including relative
humidity (shaded; warmer colors indicate drier air), surface fluxes (magenta arrows), eddy circulation (black arrows), cold pools (blue-
dashed lines), and rainfall (light-blue lines). (b and c, right) Corresponding maps in the x-y plane of negative ¢’ at 25 m (blue), upward
motion at 225 m (red), and cloud (gray-black) (directly from model output; cf. Figure 6).

Diurnal SST increase drives
daytime convection
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Motivation

Two hats
« Atmosphere cares only about SST « Ocean cares only about surface fluxes
» We neglect effect of ocean dynamics on » We neglect effect of atmospheric
SST variability dynamics on energy and momentum
« Atmospheric models with prescribed or fluxes
slab SST * Ocean models forced with prescribed

atmospheric forcing

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



Motivation
Or is it one hat?

Interactions between atmosphere
and ocean are fully coupled
processes.

Changes to one environment will
modity surface fluxes and force
adjustment in the other environment
and so on...

DOES IT MATTER?
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Motivation
Atmopshere-ocean transition zone

* We need to go beyond air-sea
interface and consideration of
surface fluxes only .
= 690
* The atmosphere-ocean S
transition zone is a conceptual 3 500+ Consideration of physical (bio-
framework that considers T Chemica') processes within
processes directly influencing the atmosphere-ocean
air-sea interface and surface transition zone allow
fluxes. desciption of the coupled
« The atmosphere-ocean 04 environment.
transition zone extends roughly Applies to measurements and
from the bottom of oceanic 633 modeling. |
mixed Iaye.r to the top of the -100 Salinity / %o Requires profiles!
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Atmosphere-ocean transition zone

Measurement constrains

1000 km
* Limited profiling options in the 100 km
atmospheric boundary layer, even over
land
10 km
« Data gap exacerbated over oceans
» Ship-borne measurements contrains to i ke
the platform (big structure), balloons
and remote sensing
0.1 km
0 km
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Atmosphere-ocean transition zone
Measurement constrains

Typical ocean profiling does not extend to the atmosphere and rarely close
to the air-sea interface
» Shipborne
« CTD - blind in the top several (~10) meters

« XBT/XCTD - can measure within the top layer but affected by platform’s
presence

« Autonomous
» Argo floats - most switch off around 5m depth

* Moorings = typically poor vertical resolution but, they can have surface
measurements

» Gliders - can measure to near top layer, but no surface component
 surface vehicles/saildrones - both atmosphere and ocean but no profiles

« Satellites - good for surface,
bad for subsurface




Atmosphere-ocean transition zone

Measurement constrains
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Atmosphere-ocean transition zone
Measurement constrains

« Assessing interactions between atmosphere and ocean require
measurement of appropriate properties (momentum, energy, etc.)
across an interface between air and water

* Profiles of respective properties across an air-sea interface
« Autonomous measurements largely restricted to a single environment

« Ship-borne measurement limited by disturbances due to a vessel’s
presence in both atmospheric and oceanic environemnts

SOLUTION: UAVs with atmosphere and ocean measuring
capabilities launched from a ship for measurements across an air-
sea interface in an environment undisturbed by the vessel

Stevens et al 2021




Profiling across the air-sea interface is not
necessary a new idea...

« R/P Flip (launched in 1962) possess capability of instantuous, collocated measurements across air-
sea interface at multiple levels

« But there is only one Flip plus $$$$ to operate it
This approach is not scalable




Atmosphere-ocean transition zone

UAV measurments

» Goal — perform measurements that span across the air-sea interface, that is between ~10m
below the surface to ~500m above it.

« Perform measurements in a vicinity to a research vessel (logistics, cross-calibration) but in an
environment not disturbed by it

» Cover the part of atmosphere-ocean transition zone under-sampled by other methods

» Direct goal: can we measure coupled atmosphere-ocean environment during occurence of
diurnal warm layers?

Iﬁg nstitute of Grophysics
Polish Academy of Sciences
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Diurnal warm layers
Warm layer days vs no warm layer days

(a) Warm layer days (b) Non-warm layer days
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Diurnal warm layers
Drivers

 Warm layers appear to be primarily driven by atmospheric
conditions: surface wind speed and shortwave radiation at
the ocean surface

« Low wind speed and high insolation favor development of a warm

layer

« We can derive a simple diagnostic model
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Diurnal warm layers
Life can never be that simple

* Prognostic model does not account for ocean
dynamics

+ BoBBLE 2016 observations (gliders) reveal that
under relatively uniform atmospheric conditions, local
diurnal SST response can differ

» Potenial impact of oceanic mesoscale variability

* Atmospheric conditions assessed based on
reanalysis / flux products
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Diurnal warm layers
Life can never be that simple

* Prognostic model does not account for ocean
dynamics

+ BoBBLE 2016 observations (gliders) reveal that
under relatively uniform atmospheric conditions, local
diurnal SST response can differ

» Potenial impact of oceanic mesoscale variability

* Atmospheric conditions assessed based on
reanalysis / flux products

Iﬁg nstitute of Grophysics
Polish Academy of Sciences
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A short recap

« Warm layers can be important for atmospheric processes
because they temporarily limit” heat capacity of the ocean by
trapping solar radiation in the top few metres (rather evenly
dirstribute to across oceanic mixed layer) of water

e Standard measurements Can_’t assess near surface regions on
the both sides of the air-sea interface

* \We want to attempt that with UAVs

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



UAV set up(s) and operations

« Small Uncrewed Aerial Vehicles (UAV), specifically multi-rotor UAV can be launched and
recovered from research vessels and equipped with dual atmospheric and oceanic
measurement capability.

 Single flight is about 10min
* Multiple (2-3) T/RH profiles up to 500m
» A single winds/aerosol profile up to 500m

« Multiple (2-4) to of the ocean
sampling (0-15m) in undisturbed
conditions ~100m away from a vessel

» A semi-simultaneous profile across an air-sea interface

 We use various payloads




UAV ocean deployments on research vessels

3 research cruises since 2020

r/'v Meteor M161 Jan-Mar 2020 (EURECA4A)

» 128 atmospheric (T/RH) profiles at 62 stations
« 2 ocean profiling stations

r/v Maria S Merian MSM112-2 Nov 2022
» 39 atmospheric profiles at 20 stations
« 5 wind profiling stations, 1 aerosol profiling station, all T/RH
* 4 ocean profiling stations

r/v Maria S Merian MSM114-2 Jan-Feb 2023

« 137 atmospheric profiles at 50 stations
« 23 wind profiling stations, 26 aerosol profiling stations, all with T/RH
« 28 ocean profiling stations

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



UAV measurements
EUREC4A

* Most measurements along the 57.25W
line, between 12N and 14.5N

 All atmospheric measurements
conducted with iMet-XQ2 temperature,
humidity, pressure data logger

 Ability to monitor spatio-temporal
variability in atmospheric conditions
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UAV measurements
EUREC4A: Jan 23, 2020 case

Ability to monitor diurnal evolution of
atmospheric conditions

Observations in a ,single” location

Multiple profiles at each station provide more
observations

* Robustness
» Short-term variability

Good overall agreement with ERA-5, but
reanalysis profiles are smoother

Iﬁg Institute of Grophysics
Polish Academy of Sciences
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UAV measurements
EUREC4A: Feb 21, 2020

 First attempt at profiling
atmosphere and ocean at the
same station

High insolation, wind ~dm/s

Reveal stratification within top
5m of the ocean

Clear difference from the CTD
data
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UAV measurements
EUREC4A: Feb 26, 2020

6I(.JJAV near-simultanous profile in the upper ocean and lower troposphere
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UAV measurements
Ocean profiles

* Two ocean temperature sensors
 RBR: temperature and pressure (depth)
« HOBO: temperature and salinity
* RBR: higher frequency, higher response rate

« Benefits of using collocated temperature
and depth measurements are apparent,
but temperature measurement and UAV-
based depth retrieval can provide a low-

cost alternative
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UAV measurements
MSM114-2

Transect from Capo Verde to Chile with extra
time in the Atlantic ITCZ

Temperature variability mostly along the
N-S transect

Humidity variability within the Atlantic ITCZ is
visible

Two sensors (independent flights) quantitatively
agree
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UAV measurements

MSM114-2: Jan 23, 2023

Comparison between ship-borne AWS and

ERA-5

Cold bias throughout the day

Different humidty (Td) tendency on a

given day

Vertical colored lines indicate UAV profiles
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UAV measurements
MSM114-2: Jan 23, 2023

UAV measuremetns (two sensors) agree with each other

Clear diurnal evolution of the lower troposphere

Wind speed profiles different than hoover measurements.

ERA-5 shows cold/dry bias

ERA-5 shows larger diurnal temperature variations and smaller
diurnal humidity variations than UAV observations
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UAV measurements
MSM114-2: Feb 3. 2023

* Observations show warming of the ABL and drying above
Surface layer

* Ocean measurements show changes in the mixed layer
temperature and development of the warm layer throughout
a day

* Measurements at two locations in slightly different
(~0.5degC) ML conditions (ocean mesoscale filament or
eddy)

« Even UAV-based ocean sampling can distort WL!!!

Iﬁg nstitute of Grophysics
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Honorable mention
Aerosol measurements on UAVs

OPC_N3 2023-02-03
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L essons learned

 We can perform near-simultaneous profiles across an air-sea interface measuring
air/water properties from 10m below the surface to 500m (or more) above it.

« UAV observations can’t cover the entire atmosphere-ocean transition zone, but provide
opportunity for in-situ measurements in the critical region with a high repetition rate.

* Measurements are constrained by weather (rain, wind, swell) but most interesting things
(for me!) happen at low-moderate wind conditions.

« Have to account for ocean mesoscale — UAV profiles do not provide the full picture

* More measurements (especially stationary) needed.

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



Future directions

» This line of reasearch will be supported over next 4 years with more measurements from research
vessels as well as in coastal zone to come.

» Partnership with U Gothenburg and Voice of the Ocean Foundation to perform regular observations
in the Baltic as well as some coordinated measurement campaigns

» Data quality and quality assurance protocols to be developed to mitigate exacerbated aging of
sSensors

 Full circle: | like to have depth measurement with my ocean temperature measurement

» More measurements (especially stationary) needed. A new grant (NCN Opus) devoted to UAV
observations in coastal zone, marginal seas and ocean oceans.

Iﬁg nstitute of Grophysics
Polish Academy of Sciences



Future directions

Profiles per 10 km square

« Baltic has gliders and has warm layers as / '
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Thank you for your attention!
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