Rigorous derivation of magneto-Boussinesq approximation with non-local term

Florian Oschmann

Czech Academy of Sciences

Joint work with P. Gwiazda, A. Wróblewska-Kamińska
15. March 2024

c
Akademie věd České republiky

The model

$$
\begin{aligned}
& D=\mathbb{T}^{2} \times(0,1) \text { periodic strip. For } T>0 \text { in }(0, T) \times D, \\
& \partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u})=0, \\
& \partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\mathrm{Ma}^{2}} \nabla p(\varrho, \vartheta)=\frac{1}{\mathrm{Fr}^{2}} \varrho \nabla G+\frac{1}{\mathrm{Al}^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
& \partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B})=0, \\
& \operatorname{div} \mathbf{B}=0, \\
& \partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta}=\sigma, \\
& \frac{1}{\vartheta}\left(\mathrm{Ma}^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\frac{\mathrm{Ma}^{2}}{\mathrm{Al}^{2}} \zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right)=\sigma
\end{aligned}
$$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$,

$$
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u})=0
$$

$$
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\mathrm{Ma}^{2}} \nabla p(\varrho, \vartheta)=\frac{1}{\mathrm{Fr}^{2}} \varrho \nabla G+\frac{1}{\mathrm{Al}^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}
$$

$$
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B})=0
$$

$$
\operatorname{div} \mathbf{B}=0
$$

$$
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta}=\sigma
$$

$$
\frac{1}{\vartheta}\left(\mathrm{Ma}^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\frac{\mathrm{Ma}^{2}}{\mathrm{Al}^{2}} \zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right)=\sigma
$$

Here:

- force G, Gibbs $\vartheta D s=D e+p D(1 / \varrho)$, Fourier $\mathbf{q}=-\kappa(\vartheta) \nabla \vartheta$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$,

$$
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u})=0
$$

$$
\begin{aligned}
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\mathrm{Ma}^{2}} \nabla p(\varrho, \vartheta) & =\frac{1}{\mathrm{Fr}^{2}} \varrho \nabla G+\frac{1}{\mathrm{Al}^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B}) & =0, \\
\operatorname{div} \mathbf{B} & =0, \\
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta} & =\sigma,
\end{aligned}
$$

$$
\frac{1}{\vartheta}\left(\mathrm{Ma}^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\frac{\mathrm{Ma}^{2}}{\mathrm{Al}^{2}} \zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right)=\sigma
$$

Here:

- force G, Gibbs $\vartheta D s=D e+p D(1 / \varrho)$, Fourier $\mathbf{q}=-\kappa(\vartheta) \nabla \vartheta$
- stress tensor $\mathbb{S}(\nabla \mathbf{u})=\mu(\vartheta)\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right)+\eta(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I}$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$,

$$
\begin{aligned}
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u}) & =0 \\
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\mathrm{Ma}^{2}} \nabla p(\varrho, \vartheta) & =\frac{1}{\mathrm{Fr}^{2}} \varrho \nabla G+\frac{1}{\mathrm{Al}^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B}) & =0, \\
\operatorname{div} \mathbf{B} & =0, \\
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta} & =\sigma,
\end{aligned}
$$

$$
\frac{1}{\vartheta}\left(\mathrm{Ma}^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\frac{\mathrm{Ma}^{2}}{\mathrm{Al}^{2}} \zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right)=\sigma
$$

Here:

- force G, Gibbs $\vartheta D s=D e+p D(1 / \varrho)$, Fourier $\mathbf{q}=-\kappa(\vartheta) \nabla \vartheta$
- stress tensor $\mathbb{S}(\nabla \mathbf{u})=\mu(\vartheta)\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right)+\eta(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I}$
- $\mathrm{Ma}=u_{c} / \sqrt{p_{c} / \varrho_{c}}, \mathrm{Fr}=u_{c} / \sqrt{g L_{c}}, \mathrm{Al}=u_{c} /\left(B_{c} / \sqrt{\varrho_{c}}\right)$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$,

$$
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u})=0
$$

$$
\begin{aligned}
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\mathrm{Ma}^{2}} \nabla p(\varrho, \vartheta) & =\frac{1}{\mathrm{Fr}^{2}} \varrho \nabla G+\frac{1}{\mathrm{Al}^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B}) & =0, \\
\operatorname{div} \mathbf{B} & =0, \\
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta} & =\sigma,
\end{aligned}
$$

$$
\frac{1}{\vartheta}\left(\mathrm{Ma}^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\frac{\mathrm{Ma}^{2}}{\mathrm{Al}^{2}} \zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right)=\sigma
$$

Here:

- force G, Gibbs $\vartheta D s=D e+p D(1 / \varrho)$, Fourier $\mathbf{q}=-\kappa(\vartheta) \nabla \vartheta$
- stress tensor $\mathbb{S}(\nabla \mathbf{u})=\mu(\vartheta)\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right)+\eta(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I}$
- $\mathrm{Ma}=u_{c} / \sqrt{p_{c} / \varrho_{c}}=\varepsilon, \mathrm{Fr}=u_{c} / \sqrt{g L_{c}}=\varepsilon^{\frac{1}{2}}, \mathrm{Al}=u_{c} /\left(B_{c} / \sqrt{\varrho_{c}}\right)=\varepsilon$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$, low stratification

$$
\begin{aligned}
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u}) & =0, \\
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\varepsilon^{2}} \nabla p(\varrho, \vartheta) & =\frac{1}{\varepsilon} \varrho \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B}) & =0, \\
\operatorname{div} \mathbf{B} & =0, \\
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta} & =\sigma, \\
\frac{1}{\vartheta}\left(\varepsilon^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right) & =\sigma
\end{aligned}
$$

Boundary conditions on ∂D :

$$
\mathbf{u} \cdot \mathbf{n}=0, \quad[\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{n}] \times \mathbf{n}=0, \quad \mathbf{B} \times \mathbf{n}=0, \quad \vartheta=\bar{\vartheta}+\varepsilon \vartheta_{B}
$$

The model

$D=\mathbb{T}^{2} \times(0,1)$ periodic strip. For $T>0$ in $(0, T) \times D$, low stratification

$$
\begin{aligned}
\partial_{t} \varrho+\operatorname{div}(\varrho \mathbf{u}) & =0, \\
\partial_{t}(\varrho \mathbf{u})+\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}(\vartheta, \nabla \mathbf{u})+\frac{1}{\varepsilon^{2}} \nabla p(\varrho, \vartheta) & =\frac{1}{\varepsilon} \varrho \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B} \times \mathbf{B}, \\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{curl}(\zeta(\vartheta) \operatorname{curl} \mathbf{B}) & =0, \\
\operatorname{div} \mathbf{B} & =0, \\
\partial_{t}(\varrho s)+\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div} \frac{\mathbf{q}}{\vartheta} & =\sigma, \\
\frac{1}{\vartheta}\left(\varepsilon^{2} \mathbb{S}(\nabla \mathbf{u}): \nabla \mathbf{u}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta}+\zeta(\vartheta)|\operatorname{curl} \mathbf{B}|^{2}\right) & =\sigma
\end{aligned}
$$

Boundary conditions on ∂D :

$$
\mathbf{u} \cdot \mathbf{n}=0, \quad[\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{n}] \times \mathbf{n}=0, \quad \mathbf{B} \times \mathbf{n}=0, \quad \vartheta=\bar{\vartheta}+\varepsilon \vartheta_{B}
$$

Question: What happens when $\varepsilon \rightarrow 0$?

Formal derivation I: preliminaries

- $\mathrm{Ma}=\varepsilon$ is small $\Rightarrow \varrho_{\varepsilon} \rightarrow \bar{\varrho}$ constant

Formal derivation I: preliminaries

- $\mathrm{Ma}=\varepsilon$ is small $\Rightarrow \varrho_{\varepsilon} \rightarrow \bar{\varrho}$ constant
- $\sigma_{\varepsilon} \stackrel{!}{=} \mathcal{O}\left(\varepsilon^{2}\right) \Rightarrow \vartheta_{\varepsilon} \rightarrow \bar{\vartheta}$, curl $\mathbf{B}_{\varepsilon} \rightarrow 0$

Formal derivation I: preliminaries

- $\mathrm{Ma}=\varepsilon$ is small $\Rightarrow \varrho_{\varepsilon} \rightarrow \bar{\varrho}$ constant
- $\sigma_{\varepsilon} \stackrel{!}{=} \mathcal{O}\left(\varepsilon^{2}\right) \Rightarrow \vartheta_{\varepsilon} \rightarrow \bar{\vartheta}$, curl $\mathbf{B}_{\varepsilon} \rightarrow 0$
- also $\operatorname{div} \mathbf{B}_{\varepsilon}=0 \Rightarrow \mathbf{B}_{\varepsilon} \rightarrow \overline{\mathbf{B}}$

Formal derivation I: preliminaries

- $\mathrm{Ma}=\varepsilon$ is small $\Rightarrow \varrho_{\varepsilon} \rightarrow \bar{\varrho}$ constant
- $\sigma_{\varepsilon} \stackrel{!}{=} \mathcal{O}\left(\varepsilon^{2}\right) \Rightarrow \vartheta_{\varepsilon} \rightarrow \bar{\vartheta}$, curl $\mathbf{B}_{\varepsilon} \rightarrow 0$
- also $\operatorname{div} \mathbf{B}_{\varepsilon}=0 \Rightarrow \mathbf{B}_{\varepsilon} \rightarrow \overline{\mathbf{B}}$
- in turn, can write $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$

Formal derivation I: preliminaries

- $\mathrm{Ma}=\varepsilon$ is small $\Rightarrow \varrho_{\varepsilon} \rightarrow \bar{\varrho}$ constant
- $\sigma_{\varepsilon} \stackrel{!}{=} \mathcal{O}\left(\varepsilon^{2}\right) \Rightarrow \vartheta_{\varepsilon} \rightarrow \bar{\vartheta}$, curl $\mathbf{B}_{\varepsilon} \rightarrow 0$
- also $\operatorname{div} \mathbf{B}_{\varepsilon}=0 \Rightarrow \mathbf{B}_{\varepsilon} \rightarrow \overline{\mathbf{B}}$
- in turn, can write $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$
- $\mathbf{B}_{\varepsilon} \times \mathbf{n}=0$ and $\mathbf{n}= \pm \mathbf{e}_{3} \Rightarrow \overline{\mathbf{B}}=(0,0, \bar{b})$, and $\mathbf{B}^{1}=\left(0,0, b^{1}\right)$; by $\operatorname{div} \mathbf{B}^{1}=0$, we have $b^{1}=b^{1}\left(t, x_{1}, x_{2}\right)$

Formal derivation II: CE, form of U, IE

- CE:

$$
0=\partial_{t} \varrho_{\varepsilon}+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right) \rightarrow \partial_{t} \bar{\varrho}+\operatorname{div}(\bar{\varrho} \mathbf{U}) \Rightarrow \operatorname{div} \mathbf{U}=0
$$

Formal derivation II: CE, form of U, IE

- CE:

$$
0=\partial_{t} \varrho_{\varepsilon}+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right) \rightarrow \partial_{t} \bar{\varrho}+\operatorname{div}(\bar{\varrho} \mathbf{U}) \Rightarrow \operatorname{div} \mathbf{U}=0
$$

- IE: Plug in $\mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$ to get

$$
\begin{aligned}
& \varepsilon \partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times \mathbf{u}_{\varepsilon}\right)+\varepsilon \operatorname{curl}\left(\zeta\left(\bar{\vartheta}+\varepsilon \vartheta^{1}\right) \operatorname{curl} \mathbf{B}^{1}\right)=0 \\
& \Rightarrow \operatorname{curl}(\overline{\mathbf{B}} \times \mathbf{U})=(\mathbf{U} \cdot \nabla) \overline{\mathbf{B}}-(\overline{\mathbf{B}} \cdot \nabla) \mathbf{U} \stackrel{!}{=} 0 \Rightarrow \partial_{3} \mathbf{U}=0
\end{aligned}
$$

and $\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right)=0$

Formal derivation II: CE, form of U, IE

- CE:

$$
0=\partial_{t} \varrho_{\varepsilon}+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right) \rightarrow \partial_{t} \bar{\varrho}+\operatorname{div}(\bar{\varrho} \mathbf{U}) \Rightarrow \operatorname{div} \mathbf{U}=0
$$

- IE: Plug in $\mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$ to get

$$
\begin{aligned}
& \varepsilon \partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times \mathbf{u}_{\varepsilon}\right)+\varepsilon \operatorname{curl}\left(\zeta\left(\bar{\vartheta}+\varepsilon \vartheta^{1}\right) \operatorname{curl} \mathbf{B}^{1}\right)=0 \\
& \Rightarrow \operatorname{curl}(\overline{\mathbf{B}} \times \mathbf{U})=(\mathbf{U} \cdot \nabla) \overline{\mathbf{B}}-(\overline{\mathbf{B}} \cdot \nabla) \mathbf{U} \stackrel{!}{=} 0 \Rightarrow \partial_{3} \mathbf{U}=0
\end{aligned}
$$

and $\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right)=0$

- BC on $\mathbf{u}_{\varepsilon}: 0=\mathbf{u}_{\varepsilon} \cdot \mathbf{n} \rightarrow \mathbf{U} \cdot \mathbf{n} \Rightarrow \mathbf{U}=\left(U_{1}, U_{2}, 0\right)\left(t, x_{1}, x_{2}\right)$

Formal derivation III: magneto-Boussinesq

- ME: zeroth order terms lead to $\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \varrho_{\varepsilon} \nabla G+\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon}$

Formal derivation III: magneto-Boussinesq

- ME: zeroth order terms lead to $\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \varrho_{\varepsilon} \nabla G+\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon}$
- As $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$, we have

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}=\bar{\varrho} \nabla G+\operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}
$$

Formal derivation III: magneto-Boussinesq

- ME: zeroth order terms lead to $\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \varrho_{\varepsilon} \nabla G+\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon}$
- As $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$, we have

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}=\bar{\varrho} \nabla G+\operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}
$$

- By structure $\overline{\mathbf{B}}=(0,0, \bar{b})$ and $\mathbf{B}^{1}=\left(0,0, b^{1}\right)$, get curl $\mathbf{B}^{1} \times \overline{\mathbf{B}}=-\nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)$ (structurally correct!)

Formal derivation III: magneto-Boussinesq

- ME: zeroth order terms lead to $\nabla p\left(\varrho_{\varepsilon}, v_{\varepsilon}\right)=\varepsilon \varrho_{\varepsilon} \nabla G+\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon}$
- As $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$, we have

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}=\bar{\varrho} \nabla G+\operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}
$$

- By structure $\overline{\mathbf{B}}=(0,0, \bar{b})$ and $\mathbf{B}^{1}=\left(0,0, b^{1}\right)$, get curl $\mathbf{B}^{1} \times \overline{\mathbf{B}}=-\nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)$ (structurally correct!)
- Removing gradients, we get magneto-Boussinesq relation

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\overline{\mathbf{B}} \cdot \mathbf{B}^{1}=\bar{\varrho} G+\chi(t)
$$

Formal derivation III: magneto-Boussinesq

- ME: zeroth order terms lead to $\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \varrho_{\varepsilon} \nabla G+\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon}$
- As $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{B}_{\varepsilon}=\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}$, we have

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}=\bar{\varrho} \nabla G+\operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}
$$

- By structure $\overline{\mathbf{B}}=(0,0, \bar{b})$ and $\mathbf{B}^{1}=\left(0,0, b^{1}\right)$, get curl $\mathbf{B}^{1} \times \overline{\mathbf{B}}=-\nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)$ (structurally correct!)
- Removing gradients, we get magneto-Boussinesq relation

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\overline{\mathbf{B}} \cdot \mathbf{B}^{1}=\bar{\varrho} G+\chi(t)
$$

- Know: $\int_{D} \varrho^{1} \mathrm{~d} x=0, \int_{D} \mathbf{B}^{1} \mathrm{~d} x=0$; assume: $\int_{D} G \mathrm{~d} x=0$, then $\chi(t)=\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) f_{D} \vartheta^{1} \mathrm{~d} x$ and Boussinesq reads

$$
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\overline{\mathbf{B}} \cdot \mathbf{B}^{1}=\bar{\varrho} G+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) f_{D} \vartheta^{1} \mathrm{~d} x .
$$

Formal derivation IV: ME, part 1

- ME again: recall

$$
\begin{aligned}
& \partial_{t}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}\right)-\operatorname{div} \mathbb{S}\left(\vartheta_{\varepsilon}, \nabla \mathbf{u}_{\varepsilon}\right) \\
& =-\frac{1}{\varepsilon^{2}} \nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)+\frac{1}{\varepsilon} \varrho_{\varepsilon} \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\epsilon}
\end{aligned}
$$

Formal derivation IV: ME, part 1

- ME again: recall

$$
\begin{aligned}
& \partial_{t}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}\right)-\operatorname{div} \mathbb{S}\left(\vartheta_{\varepsilon}, \nabla \mathbf{u}_{\varepsilon}\right) \\
& =-\frac{1}{\varepsilon^{2}} \nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)+\frac{1}{\varepsilon} \varrho_{\varepsilon} \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\epsilon}
\end{aligned}
$$

- LHS: as $\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}, \mathbf{u}_{\varepsilon}\right) \rightarrow(\bar{\varrho}, \bar{\vartheta}, \mathbf{U})$,

$$
\begin{aligned}
& \partial_{t}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)+\operatorname{div}\left(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}\right)-\operatorname{div} \mathbb{S}\left(\vartheta_{\varepsilon}, \nabla \mathbf{u}_{\varepsilon}\right) \\
& \rightarrow \bar{\varrho}\left(\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U}\right)-\operatorname{div} \mathbb{S}(\bar{\vartheta}, \nabla \mathbf{U}) \\
& =\bar{\varrho}\left(\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U}\right)-\mu(\bar{\vartheta}) \nabla^{2} \mathbf{U}
\end{aligned}
$$

Formal derivation V: ME, part 2

- RHS: as before,

$$
\begin{aligned}
\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon} & =\operatorname{curl}\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \\
& =\varepsilon \operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}+\varepsilon^{2} \operatorname{curl} \mathbf{B}^{1} \times \mathbf{B}^{1}=-\varepsilon \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\varepsilon^{2} \nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

Formal derivation V: ME, part 2

- RHS: as before,

$$
\begin{aligned}
\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon} & =\operatorname{curl}\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \\
& =\varepsilon \operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}+\varepsilon^{2} \operatorname{curl} \mathbf{B}^{1} \times \mathbf{B}^{1}=-\varepsilon \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\varepsilon^{2} \nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

- Moreover,

$$
\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\varepsilon \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}
$$

Formal derivation V: ME, part 2

- RHS: as before,

$$
\begin{aligned}
\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon} & =\operatorname{curl}\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \\
& =\varepsilon \operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}+\varepsilon^{2} \operatorname{curl} \mathbf{B}^{1} \times \mathbf{B}^{1}=-\varepsilon \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\varepsilon^{2} \nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

- Moreover,

$$
\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\varepsilon \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}
$$

- Hence,

$$
\begin{aligned}
- & \frac{1}{\varepsilon^{2}} \nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)+\frac{1}{\varepsilon} \varrho_{\varepsilon} \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\epsilon} \\
= & -\frac{1}{\varepsilon}\left(\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}\right)+\frac{\varrho_{\varepsilon}-\bar{\varrho}}{\varepsilon} \nabla G+\frac{1}{\varepsilon} \bar{\varrho} \nabla G \\
& -\frac{1}{\varepsilon} \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

Formal derivation V: ME, part 2

- RHS: as before,

$$
\begin{aligned}
\operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\varepsilon} & =\operatorname{curl}\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \times\left(\overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right) \\
& =\varepsilon \operatorname{curl} \mathbf{B}^{1} \times \overline{\mathbf{B}}+\varepsilon^{2} \operatorname{curl} \mathbf{B}^{1} \times \mathbf{B}^{1}=-\varepsilon \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\varepsilon^{2} \nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

- Moreover,

$$
\nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=\varepsilon \partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\varepsilon \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}
$$

- Hence,

$$
\begin{aligned}
- & \frac{1}{\varepsilon^{2}} \nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)+\frac{1}{\varepsilon} \varrho_{\varepsilon} \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\epsilon} \\
= & -\frac{1}{\varepsilon}\left(\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \nabla \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \nabla \vartheta^{1}\right)+\frac{\varrho_{\varepsilon}-\bar{\varrho}}{\varepsilon} \nabla G+\frac{1}{\varepsilon} \bar{\varrho} \nabla G \\
& -\frac{1}{\varepsilon} \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}
\end{aligned}
$$

- By Boussinesq relation,

$$
\begin{aligned}
& -\frac{1}{\varepsilon^{2}} \nabla p\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)+\frac{1}{\varepsilon} \varrho_{\varepsilon} \nabla G+\frac{1}{\varepsilon^{2}} \operatorname{curl} \mathbf{B}_{\varepsilon} \times \mathbf{B}_{\epsilon} \\
& \rightarrow \varrho^{1} \nabla G-\nabla \frac{1}{2}\left|\mathbf{B}^{1}\right|^{2}-\nabla \pi=\varrho^{1} \nabla G-\nabla \Pi
\end{aligned}
$$

Formal derivation VI: HE, part 1

- HE: recall

$$
\begin{array}{r}
\partial_{t}\left(\varrho_{\varepsilon} s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)\right)+\operatorname{div}\left(\varrho_{\varepsilon} s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right) \mathbf{u}_{\varepsilon}\right)+\operatorname{div} \frac{\mathbf{q}\left(\vartheta_{\varepsilon}, \nabla \vartheta_{\varepsilon}\right)}{\vartheta_{\varepsilon}} \\
=\frac{1}{\vartheta_{\varepsilon}}\left(\varepsilon^{2} \mathbb{S}\left(\nabla \mathbf{u}_{\varepsilon}\right): \nabla \mathbf{u}_{\varepsilon}-\frac{\mathbf{q}\left(\vartheta_{\varepsilon}, \nabla \vartheta_{\varepsilon}\right) \cdot \nabla \vartheta_{\varepsilon}}{\vartheta_{\varepsilon}}+\zeta\left(\vartheta_{\varepsilon}\right)\left|\operatorname{curl} \mathbf{B}_{\varepsilon}\right|^{2}\right)
\end{array}
$$

Formal derivation VI: HE, part 1

- HE: recall

$$
\left.\varrho_{\varepsilon}\left(\partial_{t} s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)\right)+\operatorname{div}\left(s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right) \mathbf{u}_{\varepsilon}\right)\right)-\operatorname{div} \frac{\kappa\left(\vartheta_{\varepsilon}\right) \nabla \vartheta_{\varepsilon}}{\vartheta_{\varepsilon}}=\mathcal{O}\left(\varepsilon^{2}\right)
$$

Formal derivation VI: HE, part 1

- HE: recall

$$
\left.\varrho_{\varepsilon}\left(\partial_{t} s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)\right)+\operatorname{div}\left(s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right) \mathbf{u}_{\varepsilon}\right)\right)-\operatorname{div} \frac{\kappa\left(\vartheta_{\varepsilon}\right) \nabla \vartheta_{\varepsilon}}{\vartheta_{\varepsilon}}=\mathcal{O}\left(\varepsilon^{2}\right)
$$

- Expanding (recall $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}$)

$$
s\left(\varrho_{\varepsilon}, \vartheta \vartheta_{\varepsilon}\right)=s(\bar{\varrho}, \bar{\vartheta})+\varepsilon \partial_{\varrho} s(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\varepsilon \partial_{\vartheta} s(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\mathcal{O}\left(\varepsilon^{2}\right),
$$

we get $\left(\partial_{*} \bar{s}=\partial_{*} s(\bar{\varrho}, \bar{\vartheta})\right)$

$$
\begin{array}{r}
\left(\bar{\varrho}+\varepsilon \varrho^{1}\right)\left(\varepsilon \partial_{\varrho} \bar{s} \partial_{t} \varrho^{1}+\varepsilon \partial_{\vartheta} \bar{s} \partial_{t} \vartheta^{1}+\operatorname{div}\left[\mathbf{u}_{\varepsilon}\left(\varepsilon \partial_{\varrho} \bar{s} \varrho^{1}+\varepsilon \partial_{\vartheta} \bar{s} \vartheta^{1}\right)\right]\right) \\
-\varepsilon \operatorname{div} \frac{\kappa\left(\vartheta_{\varepsilon}\right) \nabla \vartheta^{1}}{\vartheta_{\varepsilon}}=\mathcal{O}\left(\varepsilon^{2}\right),
\end{array}
$$

Formal derivation VI: HE, part 1

- HE: recall

$$
\left.\varrho_{\varepsilon}\left(\partial_{t} s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)\right)+\operatorname{div}\left(s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right) \mathbf{u}_{\varepsilon}\right)\right)-\operatorname{div} \frac{\kappa\left(\vartheta_{\varepsilon}\right) \nabla \vartheta_{\varepsilon}}{\vartheta_{\varepsilon}}=\mathcal{O}\left(\varepsilon^{2}\right)
$$

- Expanding (recall $\varrho_{\varepsilon}=\bar{\varrho}+\varepsilon \varrho^{1}, \vartheta_{\varepsilon}=\bar{\vartheta}+\varepsilon \vartheta^{1}$)

$$
s\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}\right)=s(\bar{\varrho}, \bar{\vartheta})+\varepsilon \partial_{\varrho} s(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\varepsilon \partial_{\vartheta} s(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

we get $\left(\partial_{*} \bar{s}=\partial_{*} s(\bar{\varrho}, \bar{\vartheta})\right)$

$$
\begin{aligned}
&\left(\bar{\varrho}+\varepsilon \varrho^{1}\right)\left(\varepsilon \partial_{\varrho} \bar{s} \partial_{t} \varrho^{1}+\varepsilon \partial_{\vartheta} \bar{s} \partial_{t} \vartheta^{1}+\operatorname{div}\left[\mathbf{u}_{\varepsilon}\left(\varepsilon \partial_{\varrho} \bar{s} \varrho^{1}+\varepsilon \partial_{\vartheta} \bar{s} \vartheta^{1}\right)\right]\right) \\
&-\varepsilon \operatorname{div} \frac{\kappa\left(\vartheta_{\varepsilon}\right) \nabla \vartheta^{1}}{\vartheta_{\varepsilon}}=\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

in turn for $\varepsilon \rightarrow 0$

$$
\bar{\varrho} \partial_{t}\left(\partial_{\varrho} \bar{s} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)+\bar{\varrho} \operatorname{div}\left[\mathbf{U}\left(\partial_{\varrho} \bar{s} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)\right]-\frac{\kappa(\bar{\vartheta})}{\bar{\vartheta}} \nabla^{2} \vartheta^{1}=0 .
$$

Formal derivation VII: HE, part 2

- Gibbs' relation $\vartheta D s=D e+p D(1 / \varrho)$ yields

$$
\vartheta \partial_{\vartheta} s=\partial_{\vartheta} e, \quad \vartheta \partial_{\varrho} s=\partial_{\varrho} e-\frac{p}{\varrho^{2}}
$$

Formal derivation VII: HE, part 2

- Gibbs' relation $\vartheta D s=D e+p D(1 / \varrho)$ yields

$$
\vartheta \partial_{\vartheta} s=\partial_{\vartheta} e, \quad \vartheta \partial_{\varrho} s=\partial_{\varrho} e-\frac{p}{\varrho^{2}}
$$

- Taking cross-derivatives wrt. ϱ and ϑ, we get

$$
\vartheta \partial_{\varrho \vartheta}^{2} s=\partial_{\varrho \vartheta}^{2} e, \quad \partial_{\varrho} s+\vartheta \partial_{\varrho \vartheta}^{2} s=\partial_{\varrho \vartheta}^{2} e-\frac{\partial_{\vartheta} p}{\varrho^{2}} \Rightarrow \vartheta \partial_{\varrho} s=-\frac{\vartheta}{\varrho^{2}} \partial_{\vartheta} p
$$

Formal derivation VII: HE, part 2

- Gibbs' relation $\vartheta D s=D e+p D(1 / \varrho)$ yields

$$
\vartheta \partial_{\vartheta} s=\partial_{\vartheta} e, \quad \vartheta \partial_{\varrho} s=\partial_{\varrho} e-\frac{p}{\varrho^{2}}
$$

- Taking cross-derivatives wrt. ϱ and ϑ, we get

$$
\vartheta \partial_{\varrho \vartheta}^{2} s=\partial_{\varrho \vartheta}^{2} e, \quad \partial_{\varrho} s+\vartheta \partial_{\varrho \vartheta}^{2} s=\partial_{\varrho \vartheta}^{2} e-\frac{\partial_{\vartheta} p}{\varrho^{2}} \Rightarrow \vartheta \partial_{\varrho} s=-\frac{\vartheta}{\varrho^{2}} \partial_{\vartheta} p
$$

- from BR, we have

$$
\varrho^{1}=\frac{\bar{\varrho}}{\partial_{\varrho} p} G-\frac{1}{\partial_{\varrho} p} \overline{\mathbf{B}} \cdot \mathbf{B}^{1}-\frac{\partial_{\vartheta} p}{\partial_{\varrho} p}\left(\vartheta^{1}-f_{D} \vartheta^{1} \mathrm{~d} x\right)
$$

Formal derivation VIII: HE, part 3

- Collecting equations:

$$
\begin{gathered}
\bar{\varrho}_{t}\left(\partial_{\varrho} \bar{\varrho}^{1} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)+\bar{\varrho} \operatorname{div}\left[\mathbf{U}\left(\partial_{\varrho} \bar{\varrho} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)\right]-\frac{\kappa(\bar{\vartheta})}{\bar{\vartheta}} \nabla^{2} \vartheta^{1}=0 \\
\bar{\vartheta} \partial_{\vartheta} \bar{s}=\partial_{\vartheta} e(\bar{\varrho}, \bar{\vartheta}), \quad \bar{\vartheta} \partial_{\varrho} \bar{s}=-\frac{\bar{\vartheta}}{\bar{\varrho}^{2}} \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \\
\varrho^{1}=\frac{\bar{\varrho}}{\partial_{\varrho} p} G-\frac{1}{\partial_{\varrho} p} \overline{\mathbf{B}} \cdot \mathbf{B}^{1}-\frac{\partial_{\vartheta} p}{\partial_{\varrho} p}\left(\vartheta^{1}-f_{D} \vartheta^{1} \mathrm{~d} x\right)
\end{gathered}
$$

Formal derivation VIII: HE, part 3

- Collecting equations:

$$
\begin{gathered}
\bar{\varrho}_{t}\left(\partial_{\varrho} \overline{{ }_{\varrho}} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)+\bar{\varrho} \operatorname{div}\left[\mathbf{U}\left(\partial_{\varrho} \bar{\varrho}^{\varrho} \varrho^{1}+\partial_{\vartheta} \bar{s} \vartheta^{1}\right)\right]-\frac{\kappa(\bar{\vartheta})}{\bar{\vartheta}} \nabla^{2} \vartheta^{1}=0 \\
\bar{\vartheta} \partial_{\vartheta} \bar{s}=\partial_{\vartheta} e(\bar{\varrho}, \bar{\vartheta}), \quad \bar{\vartheta} \partial_{\varrho} \bar{s}=-\frac{\bar{\vartheta}}{\bar{\varrho}^{2}} \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \\
\varrho^{1}=\frac{\bar{\varrho}}{\partial_{\varrho} p} G-\frac{1}{\partial_{\varrho} p} \overline{\mathbf{B}} \cdot \mathbf{B}^{1}-\frac{\partial_{\vartheta} p}{\partial_{\varrho} p}\left(\vartheta^{1}-f_{D} \vartheta^{1} \mathrm{~d} x\right)
\end{gathered}
$$

- Putting all together, we find

$$
\begin{aligned}
& \bar{\varrho} c_{p}(\bar{\varrho}, \bar{\vartheta})\left(\partial_{t} \vartheta^{1}+\mathbf{U} \cdot \nabla \vartheta^{1}\right)-\bar{\varrho} \bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta}) \mathbf{U} \cdot \nabla G-\kappa(\bar{\vartheta}) \nabla^{2} \vartheta^{1} \\
& =\bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta}) \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta^{1} \mathrm{~d} x-\bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta})\left(\partial_{t}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)+\mathbf{U} \cdot \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)\right),
\end{aligned}
$$

where

$$
\alpha(\bar{\varrho}, \bar{\vartheta})=\frac{1}{\bar{\varrho}} \frac{\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})}{\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta})}, \quad c_{p}(\bar{\varrho}, \bar{\vartheta})=\partial_{\vartheta} e(\bar{\varrho}, \bar{\vartheta})+\frac{\bar{\vartheta}}{\bar{\varrho}} \alpha(\bar{\varrho}, \bar{\vartheta}) \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})
$$

Target system

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0, \quad \operatorname{div} \mathbf{B}^{1}=0, \\
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \varrho^{1}+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \vartheta^{1}+\overline{\mathbf{B}} \cdot \mathbf{B}^{1}=\bar{\varrho} G+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) f_{D} \vartheta^{1} \mathrm{~d} x \\
\bar{\varrho}\left(\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U}\right)-\mu(\bar{\vartheta}) \nabla^{2} \mathbf{U}+\nabla \Pi=\varrho^{1} \nabla G, \\
\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right)=0, \\
\bar{\varrho} c_{p}(\bar{\varrho}, \bar{\vartheta})\left(\partial_{t} \vartheta^{1}+\mathbf{U} \cdot \nabla \vartheta^{1}\right)-\bar{\varrho} \bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta}) \mathbf{U} \cdot \nabla G-\kappa(\bar{\vartheta}) \nabla^{2} \vartheta^{1} \\
=\bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta}) \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta^{1} \mathrm{~d} x-\bar{\vartheta} \alpha(\bar{\varrho}, \bar{\vartheta})\left(\partial_{t}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)+\mathbf{U} \cdot \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)\right),
\end{array}
$$

where

$$
\alpha(\bar{\varrho}, \bar{\vartheta})=\frac{1}{\bar{\varrho}} \frac{\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})}{\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta})}, \quad c_{p}(\bar{\varrho}, \bar{\vartheta})=\partial_{\vartheta} e(\bar{\varrho}, \bar{\vartheta})+\frac{\bar{\vartheta}}{\bar{\varrho}} \alpha(\bar{\varrho}, \bar{\vartheta}) \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})
$$

$\mathrm{BC}:\left.\vartheta^{1}\right|_{\partial D}=\vartheta_{B}\left(\right.$ recall $\left.\left.\vartheta_{\varepsilon}\right|_{\partial D}=\bar{\vartheta}+\varepsilon \vartheta_{B}\right)$

Target system

Some modifications for magnetic field:

$$
\begin{aligned}
0 & =\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right) \\
& =\partial_{t} \mathbf{B}^{1}+(\mathbf{U} \cdot \nabla) \mathbf{B}^{1}-\left(\mathbf{B}^{1} \cdot \nabla\right) \mathbf{U}-\zeta(\bar{\vartheta}) \nabla^{2} \mathbf{B}^{1}
\end{aligned}
$$

Target system

Some modifications for magnetic field:

$$
\begin{aligned}
0 & =\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right) \\
& =\partial_{t} \mathbf{B}^{1}+(\mathbf{U} \cdot \nabla) \mathbf{B}^{1}-\left(\mathbf{B}^{1} \cdot \nabla\right) \mathbf{U}-\zeta(\bar{\vartheta}) \nabla^{2} \mathbf{B}^{1}
\end{aligned}
$$

Hence, also

$$
\begin{aligned}
\partial_{t}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)+\mathbf{U} \cdot \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right) & =\overline{\mathbf{B}} \cdot\left(\partial_{t} \mathbf{B}^{1}+(\mathbf{U} \cdot \nabla) \mathbf{B}^{1}\right) \\
& =\overline{\mathbf{B}} \cdot\left(\left(\mathbf{B}^{1} \cdot \nabla\right) \mathbf{U}+\zeta(\bar{\vartheta}) \nabla^{2} \mathbf{B}^{1}\right) \\
& =\underbrace{\left(\mathbf{B}^{1} \cdot \nabla\right)(\overline{\mathbf{B}} \cdot \mathbf{U})}_{=0 \text { by } \overline{\mathbf{B}} \perp \mathbf{U}}+\zeta(\bar{\vartheta}) \nabla^{2}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)
\end{aligned}
$$

Target system

Some modifications for magnetic field:

$$
\begin{aligned}
0 & =\partial_{t} \mathbf{B}^{1}+\operatorname{curl}\left(\mathbf{B}^{1} \times \mathbf{U}\right)+\operatorname{curl}\left(\zeta(\bar{\vartheta}) \operatorname{curl} \mathbf{B}^{1}\right) \\
& =\partial_{t} \mathbf{B}^{1}+(\mathbf{U} \cdot \nabla) \mathbf{B}^{1}-\left(\mathbf{B}^{1} \cdot \nabla\right) \mathbf{U}-\zeta(\bar{\vartheta}) \nabla^{2} \mathbf{B}^{1}
\end{aligned}
$$

Hence, also

$$
\begin{aligned}
\partial_{t}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)+\mathbf{U} \cdot \nabla\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right) & =\overline{\mathbf{B}} \cdot\left(\partial_{t} \mathbf{B}^{1}+(\mathbf{U} \cdot \nabla) \mathbf{B}^{1}\right) \\
& =\overline{\mathbf{B}} \cdot\left(\left(\mathbf{B}^{1} \cdot \nabla\right) \mathbf{U}+\zeta(\bar{\vartheta}) \nabla^{2} \mathbf{B}^{1}\right) \\
& =\underbrace{\left(\mathbf{B}^{1} \cdot \nabla\right)(\overline{\mathbf{B}} \cdot \mathbf{U})}_{=0 \text { by } \overline{\mathbf{B}} \perp \mathbf{U}}+\zeta(\bar{\vartheta}) \nabla^{2}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)
\end{aligned}
$$

Final HE:

$$
\begin{aligned}
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta^{1}+\mathbf{U} \cdot \nabla \vartheta^{1}\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G & +\bar{\vartheta} \alpha \zeta \nabla^{2}\left(\overline{\mathbf{B}} \cdot \mathbf{B}^{1}\right)-\kappa \nabla^{2} \vartheta^{1} \\
& =\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta^{1} \mathrm{~d} x
\end{aligned}
$$

Relative energy

$$
\begin{aligned}
& E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H})=\frac{1}{2} \varrho|\mathbf{u}-\mathbf{U}|^{2}+\frac{1}{\varepsilon^{2}} \frac{1}{2}|\mathbf{B}-\mathbf{H}|^{2} \\
& \quad+\frac{1}{\varepsilon^{2}}[\varrho e(\varrho, \vartheta)-\Theta(\varrho s(\varrho, \vartheta)-r s(r, \Theta)) \\
& \left.\quad-\left(e(r, \Theta)-\Theta s(r, \Theta)+\frac{p(r, \Theta)}{r}\right)(\varrho-r)-r e(r, \Theta)\right]
\end{aligned}
$$

Relative energy

Relative energy inequality:

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}} \\
& +\int_{0}^{\tau} \int_{D} \frac{\Theta}{\vartheta}\left(\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}-\frac{1}{\varepsilon^{2}} \frac{\mathbf{q}(\vartheta, \nabla \vartheta) \cdot \nabla \vartheta}{\vartheta}+\frac{1}{\varepsilon^{2}} \zeta(\vartheta)|\mathbf{c u r l} \mathbf{B}|^{2}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad \leqslant \\
& \quad-\int_{0}^{\tau} \int_{D}\left(\varrho(\mathbf{u}-\mathbf{U}) \otimes(\mathbf{u}-\mathbf{U})+\frac{1}{\varepsilon^{2}} p(\varrho, \vartheta) \mathbb{I}-\mathbb{S}(\vartheta, \nabla \mathbf{u})\right): \nabla \mathbf{U} \mathrm{d} x \mathrm{~d} t \\
& \quad-\frac{1}{\varepsilon^{2}} \int_{0}^{\tau} \int_{D}(\operatorname{curl} \mathbf{B} \times \mathbf{B}) \cdot \mathbf{U} \mathrm{d} x \mathrm{~d} t \\
& \quad-\int_{0}^{\tau} \int_{D} \varrho\left(\partial_{t} \mathbf{U}+\mathbf{U} \cdot \nabla \mathbf{U}-\frac{1}{\varepsilon} \nabla G\right) \cdot(\mathbf{u}-\mathbf{U}) \mathrm{d} x \mathrm{~d} t \\
& \quad-\frac{1}{\varepsilon^{2}} \int_{0}^{\tau} \int_{D}\left(\varrho(s(\varrho, \vartheta)-s(r, \Theta)) \partial_{t} \Theta+\varrho(s(\varrho, \vartheta)-s(r, \Theta)) \mathbf{u} \cdot \nabla \Theta+\frac{\mathbf{q}(\vartheta, \nabla \vartheta)}{\vartheta} \cdot \nabla \Theta\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\frac{1}{\varepsilon^{2}} \int_{0}^{\tau} \int_{D}\left(\left(1-\frac{\varrho}{r}\right) \partial_{t} p(r, \Theta)-\frac{\varrho}{r} \mathbf{u} \cdot \nabla p(r, \Theta)\right) \mathrm{d} x \mathrm{~d} t \\
& \quad-\frac{1}{\varepsilon^{2}} \int_{0}^{\tau} \int_{D}\left(\mathbf{B} \cdot \partial_{t} \mathbf{H}-(\mathbf{B} \times \mathbf{u}) \cdot \operatorname{curl} \mathbf{H}-\zeta(\vartheta) \operatorname{curl} \mathbf{B} \cdot \operatorname{curl} \mathbf{H}\right) \mathrm{d} x \mathrm{~d} t \\
& \quad+\frac{1}{\varepsilon^{2}} \int_{0}^{\tau} \int_{D} \mathbf{H} \cdot \partial_{t} \mathbf{H} \mathrm{~d} x \mathrm{~d} t
\end{aligned}
$$

Relative energy

Relative energy inequality:

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. }} \\
& \leqslant \int_{0}^{\tau} \int_{D} \operatorname{sth}(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Relative energy

Relative energy inequality:

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. }} \\
& \leqslant \int_{0}^{\tau} \int_{D} \operatorname{sth}(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Goal: Grönwall argument, once getting

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. }} \\
& \leqslant C \int_{0}^{\tau} \int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x \mathrm{~d} t+\text { small error }
\end{aligned}
$$

Relative energy

Relative energy inequality:

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. }} \\
& \leqslant \int_{0}^{\tau} \int_{D} \operatorname{sth}(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Goal: Grönwall argument, once getting

$$
\begin{aligned}
& {\left[\int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. }} \\
& \leqslant C \int_{0}^{\tau} \int_{D} E(\varrho, \vartheta, \mathbf{u}, \mathbf{B} \mid r, \Theta, \mathbf{U}, \mathbf{H}) \mathrm{d} x \mathrm{~d} t+\text { small error }
\end{aligned}
$$

Idea: Consider

$$
E_{\varepsilon}=E\left(\varrho_{\varepsilon}, \vartheta_{\varepsilon}, \mathbf{u}_{\varepsilon}, \mathbf{B}_{\varepsilon} \mid \bar{\varrho}+\varepsilon \varrho^{1}, \bar{\vartheta}+\varepsilon \vartheta^{1}, \mathbf{U}, \overline{\mathbf{B}}+\varepsilon \mathbf{B}^{1}\right)
$$

Convergence

Outcome:

$$
\left[\int_{D} E_{\varepsilon} \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. } \leqslant C \int_{0}^{\tau} \int_{D} E_{\varepsilon} \mathrm{d} x \mathrm{~d} t+\mathcal{O}(\varepsilon)
$$

leading to

$$
\int_{D} E_{\varepsilon}(\tau) \mathrm{d} x \leqslant C \int_{D} E_{\varepsilon}(0) \mathrm{d} x+\mathcal{O}(\varepsilon)
$$

Convergence

Outcome:

$$
\left[\int_{D} E_{\varepsilon} \mathrm{d} x\right]_{t=0}^{t=\tau}+\text { sth. non-neg. } \leqslant C \int_{0}^{\tau} \int_{D} E_{\varepsilon} \mathrm{d} x \mathrm{~d} t+\mathcal{O}(\varepsilon)
$$

leading to

$$
\int_{D} E_{\varepsilon}(\tau) \mathrm{d} x \leqslant C \int_{D} E_{\varepsilon}(0) \mathrm{d} x+\mathcal{O}(\varepsilon)
$$

hence, for any $\tau \in(0, T)$, if $\int_{D} E_{\varepsilon}(0) \mathrm{d} x \rightarrow 0$, then

$$
\lim _{\varepsilon \rightarrow 0} \int_{D} E_{\varepsilon}(\tau) \mathrm{d} x=0
$$

and

$$
\begin{aligned}
& \left(\mathbf{u}_{\varepsilon}, \vartheta_{\varepsilon}, \mathbf{B}_{\varepsilon}\right) \rightarrow(\mathbf{U}, \bar{\vartheta}, \overline{\mathbf{B}}) \text { in } L^{2}\left(0, T ; W^{1,2}(D)\right), \quad \varrho_{\varepsilon} \rightarrow \bar{\varrho} \text { in } L^{\infty}\left(0, T ; L^{2}(D)\right), \\
& \left(\frac{\varrho_{\varepsilon}-\bar{\varrho}}{\varepsilon}, \frac{\vartheta_{\varepsilon}-\bar{\vartheta}}{\varepsilon}, \frac{\mathbf{B}_{\varepsilon}-\overline{\mathbf{B}}}{\varepsilon}\right) \rightarrow\left(\varrho^{1}, \vartheta^{1}, \mathbf{B}^{1}\right) \text { in } L^{2}((0, T) \times D)
\end{aligned}
$$

Scalings

- Recall

$$
\mathrm{Al}=\frac{u_{c}}{B_{c} / \sqrt{\varrho_{c}}}=\frac{u_{c}}{c_{A}}, \quad \mathrm{Ma}=\frac{u_{c}}{\sqrt{p_{c} / \varrho_{c}}}=\frac{u_{c}}{c_{s}}, \quad \mathrm{Fr}=\frac{u_{c}}{\sqrt{g L_{c}}}
$$

Scalings

- Recall

$$
\mathrm{Al}=\frac{u_{c}}{B_{c} / \sqrt{\varrho_{c}}}=\frac{u_{c}}{c_{A}}, \quad \mathrm{Ma}=\frac{u_{c}}{\sqrt{p_{c} / \varrho_{c}}}=\frac{u_{c}}{c_{s}}, \quad \mathrm{Fr}=\frac{u_{c}}{\sqrt{g L_{c}}}
$$

- Usual Boussinesq scaling: $\varepsilon_{1}=\mathrm{Ma}=\frac{u_{c}}{c_{s}}\left(=\frac{\Delta \varrho}{\bar{\varrho}}\right), u_{c}=\varepsilon_{1}^{\frac{1}{2}} \sqrt{g L_{c}}$

Scalings

- Recall

$$
\mathrm{Al}=\frac{u_{c}}{B_{c} / \sqrt{\varrho_{c}}}=\frac{u_{c}}{c_{A}}, \quad \mathrm{Ma}=\frac{u_{c}}{\sqrt{p_{c} / \varrho_{c}}}=\frac{u_{c}}{c_{s}}, \quad \mathrm{Fr}=\frac{u_{c}}{\sqrt{g L_{c}}}
$$

- Usual Boussinesq scaling: $\varepsilon_{1}=\mathrm{Ma}=\frac{u_{c}}{c_{s}}\left(=\frac{\Delta \varrho}{\bar{\varrho}}\right), u_{c}=\varepsilon_{1}^{\frac{1}{2}} \sqrt{g L_{c}}$
- Spiegel/Weiss, and Bowker/Hughes/Kersalé: $u_{c} \ll c_{s}$ and $c_{A} \sim u_{c}$, so set $\varepsilon_{2}=\frac{c_{A}^{2}}{c_{s}^{2}} \ll 1$. Then $u_{c} \sim \varepsilon_{2}^{\frac{1}{2}} c_{s}$, and $\varepsilon_{1}=\varepsilon_{2}^{\frac{1}{2}} \equiv \varepsilon$; in turn

$$
\mathrm{Al}=1, \quad \mathrm{Ma}=\varepsilon, \quad \mathrm{Fr}=\varepsilon^{\frac{1}{2}}
$$

Scalings

- Recall

$$
\mathrm{Al}=\frac{u_{c}}{B_{c} / \sqrt{\varrho_{c}}}=\frac{u_{c}}{c_{A}}, \quad \mathrm{Ma}=\frac{u_{c}}{\sqrt{p_{c} / \varrho_{c}}}=\frac{u_{c}}{c_{s}}, \quad \mathrm{Fr}=\frac{u_{c}}{\sqrt{g L_{c}}}
$$

- Usual Boussinesq scaling: $\varepsilon_{1}=\mathrm{Ma}=\frac{u_{c}}{c_{s}}\left(=\frac{\Delta \varrho}{\bar{\varrho}}\right), u_{c}=\varepsilon_{1}^{\frac{1}{2}} \sqrt{g L_{c}}$
- Spiegel/Weiss, and Bowker/Hughes/Kersalé: $u_{c} \ll c_{s}$ and $c_{A} \sim u_{c}$, so set $\varepsilon_{2}=\frac{c_{A}^{2}}{c_{s}^{2}} \ll 1$. Then $u_{c} \sim \varepsilon_{2}^{\frac{1}{2}} c_{s}$, and $\varepsilon_{1}=\varepsilon_{2}^{\frac{1}{2}} \equiv \varepsilon$; in turn

$$
\mathrm{Al}=1, \quad \mathrm{Ma}=\varepsilon, \quad \mathrm{Fr}=\varepsilon^{\frac{1}{2}}
$$

- Our case: $u_{c} \ll c_{s}$ and $c_{A} \sim c_{s}$; thus, with $\tilde{\varepsilon}_{2}=\frac{u_{c}}{c_{A}} \ll 1$, get $u_{c}=\varepsilon_{1} c_{s}=\tilde{\varepsilon}_{2} c_{A} \sim \tilde{\varepsilon}_{2} c_{s}$, hence $\varepsilon_{1}=\tilde{\varepsilon}_{2} \equiv \varepsilon$ and

$$
\mathrm{Al}=\varepsilon, \quad \mathrm{Ma}=\varepsilon, \quad \mathrm{Fr}=\varepsilon^{\frac{1}{2}} .
$$

"Mathematical" magneto-OB

Recall our target system:

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0, \quad \operatorname{div} \mathbf{B}=0, \\
\bar{\varrho}\left(\partial_{t} \mathbf{U}+(\mathbf{U} \cdot \nabla) \mathbf{U}\right)-\mu \nabla^{2} \mathbf{U}+\nabla \Pi=\varrho \nabla G, \\
\partial_{t} \mathbf{B}+(\mathbf{U} \cdot \nabla) \mathbf{B}-(\mathbf{B} \cdot \nabla) \mathbf{U}-\zeta \nabla^{2} \mathbf{B}=0, \\
\varrho \varrho c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta \\
=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x, \\
\partial_{\varrho} p(\bar{\varrho}, \bar{\vartheta}) \varrho+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \vartheta+\overline{\mathbf{B}} \cdot \mathbf{B}=\bar{\varrho} G+\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) f_{D} \vartheta \mathrm{~d} x
\end{array}
$$

"Physical" magneto-OB

(See Spiegel/Weiss: "Magnetic Buoyancy and the Boussinesq Approximation", 1982; Bowker/Hughes/Kersalé "Incorporating velocity shear into the magneto-Boussinesq approximation", 2014):

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0, \quad \operatorname{div} \mathbf{B}=0, \\
\varrho\left(\partial_{t} \mathbf{U}+(\mathbf{U} \cdot \nabla) \mathbf{U}\right)-\mu \nabla^{2} \mathbf{U}+\nabla \boldsymbol{\Pi}=-\varrho g \mathbf{e}_{3}+(\mathbf{B} \cdot \nabla) \mathbf{B}, \\
\partial_{t} \mathbf{B}+(\mathbf{U} \cdot \nabla) \mathbf{B}-(\mathbf{B} \cdot \nabla) \mathbf{U}-\zeta \nabla^{2} \mathbf{B}=-H_{\varrho}^{-1} U_{3} \mathbf{B}, \\
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\left(\partial_{t} p+\mathbf{U} \cdot \nabla p\right)-\kappa \nabla^{2} \vartheta=-U_{3} \beta, \\
p=R \varrho \vartheta, \quad \Pi=p+p_{m}=R \varrho \vartheta+\frac{1}{2}|\mathbf{B}|^{2}, \\
\partial_{t} p+\mathbf{U} \cdot \nabla p=-\bar{\varrho} g U_{3}-\left(\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}\right), \\
\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}=\mathbf{B} \cdot\left[(\mathbf{B} \cdot \nabla) \mathbf{U}+\zeta \nabla^{2} \mathbf{B}\right]
\end{array}
$$

"Physical" magneto-OB

(See Spiegel/Weiss: "Magnetic Buoyancy and the Boussinesq Approximation", 1982; Bowker/Hughes/Kersalé "Incorporating velocity shear into the magneto-Boussinesq approximation", 2014):

$$
\begin{array}{r}
\operatorname{div} \mathbf{U}=0, \quad \operatorname{div} \mathbf{B}=0, \\
\varrho\left(\partial_{t} \mathbf{U}+(\mathbf{U} \cdot \nabla) \mathbf{U}\right)-\mu \nabla^{2} \mathbf{U}+\nabla \boldsymbol{\Pi}=-\varrho g \mathbf{e}_{3}+(\mathbf{B} \cdot \nabla) \mathbf{B}, \\
\partial_{t} \mathbf{B}+(\mathbf{U} \cdot \nabla) \mathbf{B}-(\mathbf{B} \cdot \nabla) \mathbf{U}-\zeta \nabla^{2} \mathbf{B}=-H_{\varrho}^{-1} U_{3} \mathbf{B}, \\
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\left(\partial_{t} p+\mathbf{U} \cdot \nabla p\right)-\kappa \nabla^{2} \vartheta=-U_{3} \beta, \\
p=R \varrho \vartheta, \quad \Pi=p+p_{m}=R \varrho \vartheta+\frac{1}{2}|\mathbf{B}|^{2}, \\
\partial_{t} p+\mathbf{U} \cdot \nabla p=-\bar{\varrho} g U_{3}-\left(\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}\right), \\
\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}=\mathbf{B} \cdot\left[(\mathbf{B} \cdot \nabla) \mathbf{U}+\zeta \nabla^{2} \mathbf{B}\right]
\end{array}
$$

For us: $(\mathbf{B} \cdot \nabla) \mathbf{B}=b\left(t, x_{1}, x_{2}\right) \cdot \partial_{3} b\left(t, x_{1}, x_{2}\right)=0$,
$-g \mathbf{e}_{3}=\nabla\left[x \mapsto-g x_{3}\right]=\nabla G, H_{\varrho}^{-1}=-\frac{d}{d z} \log (\bar{\varrho})=0$,
$\beta=\bar{\vartheta} \gamma^{-1} \frac{\mathrm{~d}}{\mathrm{~d} z} \log \left(\bar{p} \bar{\varrho}^{-\gamma}\right)=0 \Rightarrow$ CE, ME, IE consistent!

Comparison of HE

Our HE:

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x
$$

Physical HE (according to Spiegel/Weiss):

$$
\begin{array}{r}
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\left(\partial_{t} p+\mathbf{U} \cdot \nabla p\right)-\kappa \nabla^{2} \vartheta=0, \\
p=R \varrho \vartheta, \quad \Pi=p+p_{m}=R \varrho \vartheta+\frac{1}{2}|\mathbf{B}|^{2}, \\
\partial_{t} p+\mathbf{U} \cdot \nabla p=-\bar{\varrho} g U_{3}-\left(\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}\right), \\
\partial_{t} p_{m}+\mathbf{U} \cdot \nabla p_{m}=\mathbf{B} \cdot\left[(\mathbf{B} \cdot \nabla) \mathbf{U}+\zeta \nabla^{2} \mathbf{B}\right]
\end{array}
$$

Comparison of HE

Our HE:

$\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x$
Physical HE (according to Spiegel/Weiss):

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)+\bar{\varrho} g U_{3}+\mathbf{B} \cdot\left[(\mathbf{B} \cdot \nabla) \mathbf{U}+\zeta \nabla^{2} \mathbf{B}\right]-\kappa \nabla^{2} \vartheta=0,
$$

Comparison of HE

Our HE:
$\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x$
Physical HE (according to Spiegel/Weiss):

$$
\bar{\varrho} c_{\rho}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \mathbf{U} \cdot \nabla G+\overline{\mathbf{B}} \cdot\left[(\mathbf{B} \cdot \nabla) \mathbf{U}+\zeta \nabla^{2} \mathbf{B}\right]-\kappa \nabla^{2} \vartheta=0
$$

Comparison of HE

Our HE:

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x
$$

Physical HE (according to Spiegel/Weiss):

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \mathbf{U} \cdot \nabla G+[(\mathbf{B} \cdot \nabla) \underbrace{(\bar{B} \cdot \mathbf{U})}_{=0}+\zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})]-\kappa \nabla^{2} \vartheta=0
$$

Comparison of HE

Our HE:

$\bar{\varrho} c_{\rho}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x$
Physical HE (according to Spiegel/Weiss):

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \mathbf{U} \cdot \nabla G+\zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=0
$$

Recall $p=R \varrho \vartheta$ such that $\bar{\vartheta} \alpha=\frac{\bar{\vartheta}}{\bar{\varrho}} \frac{\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})}{\partial_{e} p(\bar{\varrho}, \bar{\vartheta})}=1$, so $1: 1$ the same up to non-local term

Comparison of HE

Our HE:

$\bar{\varrho} c_{\rho}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \bar{\vartheta} \alpha \mathbf{U} \cdot \nabla G+\bar{\vartheta} \alpha \zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=\bar{\vartheta} \alpha \partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta}) \partial_{t} f_{D} \vartheta \mathrm{~d} x$
Physical HE (according to Spiegel/Weiss):

$$
\bar{\varrho} c_{p}\left(\partial_{t} \vartheta+\mathbf{U} \cdot \nabla \vartheta\right)-\bar{\varrho} \mathbf{U} \cdot \nabla G+\zeta \nabla^{2}(\overline{\mathbf{B}} \cdot \mathbf{B})-\kappa \nabla^{2} \vartheta=0
$$

Recall $p=R \varrho \vartheta$ such that $\bar{\vartheta} \alpha=\frac{\bar{\vartheta}}{\bar{\varrho}} \frac{\partial_{\vartheta} p(\bar{\varrho}, \bar{\vartheta})}{\partial_{e} p(\bar{\varrho}, \bar{\vartheta})}=1$, so $1: 1$ the same up to non-local term \rightarrow no boundary conditions in Spiegel/Weiss

Summary

- Formal and rigorous proof of magneto-Boussinesq with Dirichlet temperature boundary conditions

Summary

- Formal and rigorous proof of magneto-Boussinesq with Dirichlet temperature boundary conditions
- Completely consistent with Spiegel/Weiss and Bowker/Hughes/Kersalé (special case $G=-g x_{3}, p=R \varrho \vartheta$, no BC , different measuring of c_{A})

Summary

- Formal and rigorous proof of magneto-Boussinesq with Dirichlet temperature boundary conditions
- Completely consistent with Spiegel/Weiss and Bowker/Hughes/Kersalé (special case $G=-g x_{3}, p=R \varrho \vartheta$, no BC , different measuring of c_{A})
- Wider class of pressure functions, non-local term

Summary

- Formal and rigorous proof of magneto-Boussinesq with Dirichlet temperature boundary conditions
- Completely consistent with Spiegel/Weiss and Bowker/Hughes/Kersalé (special case $G=-g x_{3}, p=R \varrho \vartheta$, no $B C$, different measuring of c_{A})
- Wider class of pressure functions, non-local term

Dziękuję za uwagę!

References

[1] EA Spiegel, NO Weiss, Magnetic buoyancy and the Boussinesq approximation, Geophysical \& Astrophysical Fluid Dynamics 22 (1982), no. 3-4, 219-234.
[2] Jordan A Bowker, David W Hughes, Evy Kersalé, Incorporating velocity shear into the magneto-Boussinesq approximation, Geophysical \& Astrophysical Fluid Dynamics 108 (2014), no. 5, 553-567.
[3] Peter Bella, Eduard Feireisl, Florian Oschmann, Rigorous derivation of the Oberbeck-Boussinesq approximation revealing unexpected term, Communications in Mathematical Physics 403 (2023), no. 3, 1245-1273.

