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The model

D = T2 × (0, 1) periodic strip. For T > 0 in (0,T )× D,

∂tϱ+ div(ϱu) = 0,

∂t(ϱu) + div(ϱu⊗ u)− div S(ϑ,∇u) + 1
Ma2
∇p(ϱ, ϑ) = 1

Fr2
ϱ∇G +

1
Al2

curlB× B,

∂tB+ curl(B× u) + curl(ζ(ϑ) curlB) = 0,

divB = 0,

∂t(ϱs) + div(ϱsu) + div
q
ϑ

= σ,

1
ϑ

(
Ma2S(∇u) : ∇u− q · ∇ϑ

ϑ
+
Ma2

Al2
ζ(ϑ)| curlB|2

)
= σ

Here:

force G , Gibbs ϑDs = De + pD(1/ϱ), Fourier q = −κ(ϑ)∇ϑ

stress tensor S(∇u) = µ(ϑ)
(
∇u+∇Tu− 23 div uI

)
+ η(ϑ) div uI

Ma = uc/
√

pc/ϱc , Fr = uc/
√
gLc , Al = uc/(Bc/

√
ϱc)
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√
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√
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The model

D = T2 × (0, 1) periodic strip. For T > 0 in (0,T )× D, low stratification

∂tϱ+ div(ϱu) = 0,

∂t(ϱu) + div(ϱu⊗ u)− div S(ϑ,∇u) + 1
ε2
∇p(ϱ, ϑ) = 1

ε
ϱ∇G +

1
ε2

curlB× B,

∂tB+ curl(B× u) + curl(ζ(ϑ) curlB) = 0,

divB = 0,

∂t(ϱs) + div(ϱsu) + div
q
ϑ

= σ,

1
ϑ

(
ε2S(∇u) : ∇u− q · ∇ϑ

ϑ
+ ζ(ϑ)| curlB|2

)
= σ

Boundary conditions on ∂D:

u · n = 0, [S(ϑ,∇u)n]× n = 0, B× n = 0, ϑ = ϑ+ εϑB

Question: What happens when ε→ 0?
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Formal derivation I: preliminaries

Ma = ε is small ⇒ ϱε → ϱ constant

σε
!
= O(ε2) ⇒ ϑε → ϑ, curlBε → 0

also divBε = 0 ⇒ Bε → B
in turn, can write ϱε = ϱ+ εϱ1, ϑε = ϑ+ εϑ1, Bε = B+ εB1

Bε × n = 0 and n = ±e3 ⇒ B = (0, 0, b), and B1 = (0, 0, b1); by
divB1 = 0, we have b1 = b1(t, x1, x2)
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Formal derivation II: CE, form of U, IE

CE:

0 = ∂tϱε + div(ϱεuε)→ ∂tϱ+ div(ϱU) ⇒ divU = 0

IE: Plug in Bε = B+ εB1 to get

ε∂tB
1 + curl((B+ εB1)× uε) + ε curl(ζ(ϑ+ εϑ1) curlB1) = 0

⇒ curl(B×U) = (U · ∇)B− (B · ∇)U !
= 0 ⇒ ∂3U = 0

and ∂tB
1 + curl(B1 ×U) + curl(ζ(ϑ) curlB1) = 0

BC on uε: 0 = uε · n→ U · n ⇒ U = (U1,U2, 0)(t, x1, x2)
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Formal derivation III: magneto-Boussinesq

ME: zeroth order terms lead to ∇p(ϱε, ϑε) = εϱε∇G + curlBε ×Bε

As ϱε = ϱ+ εϱ1, ϑε = ϑ+ εϑ1, Bε = B+ εB1, we have

∂ϱp(ϱ, ϑ)∇ϱ1 + ∂ϑp(ϱ, ϑ)∇ϑ1 = ϱ∇G + curlB1 × B

By structure B = (0, 0, b) and B1 = (0, 0, b1), get
curlB1 × B = −∇(B · B1) (structurally correct!)
Removing gradients, we get magneto-Boussinesq relation

∂ϱp(ϱ, ϑ)ϱ
1 + ∂ϑp(ϱ, ϑ)ϑ

1 + B · B1 = ϱG+χ(t)

Know:
�
D
ϱ1 dx = 0,

�
D
B1 dx = 0; assume:

�
D
G dx = 0, then

χ(t) = ∂ϑp(ϱ, ϑ)
�
D
ϑ1 dx and Boussinesq reads

∂ϱp(ϱ, ϑ)ϱ
1 + ∂ϑp(ϱ, ϑ)ϑ

1 + B · B1 = ϱG + ∂ϑp(ϱ, ϑ)

 
D

ϑ1 dx .
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Formal derivation IV: ME, part 1

ME again: recall

∂t(ϱεuε) + div(ϱεuε ⊗ uε)− div S(ϑε,∇uε)

= − 1
ε2
∇p(ϱε, ϑε) +

1
ε
ϱε∇G +

1
ε2

curlBε × Bϵ

LHS: as (ϱε, ϑε,uε)→ (ϱ, ϑ,U),

∂t(ϱεuε) + div(ϱεuε ⊗ uε)− div S(ϑε,∇uε)
→ ϱ(∂tU+U · ∇U)− div S(ϑ,∇U)
= ϱ(∂tU+U · ∇U)− µ(ϑ)∇2U
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Formal derivation V: ME, part 2

RHS: as before,

curlBε × Bε = curl(B+ εB1)× (B+ εB1)

= ε curlB1 × B+ ε2 curlB1 × B1 = −ε∇(B · B1)− ε2∇1
2
|B1|2

Moreover,

∇p(ϱε, ϑε) = ε∂ϱp(ϱ, ϑ)∇ϱ1 + ε∂ϑp(ϱ, ϑ)∇ϑ1

Hence,

− 1
ε2
∇p(ϱε, ϑε) +

1
ε
ϱε∇G +

1
ε2

curlBε × Bϵ

= −1
ε

(
∂ϱp(ϱ, ϑ)∇ϱ1 + ∂ϑp(ϱ, ϑ)∇ϑ1

)
+
ϱε − ϱ
ε
∇G +

1
ε
ϱ∇G

−1
ε
∇(B · B1)−∇1

2
|B1|2

By Boussinesq relation,

− 1
ε2
∇p(ϱε, ϑε) +

1
ε
ϱε∇G +

1
ε2

curlBε × Bϵ

→ ϱ1∇G −∇1
2
|B1|2−∇π = ϱ1∇G −∇Π
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1
ε
ϱε∇G +

1
ε2

curlBε × Bϵ

= −1
ε

(
∂ϱp(ϱ, ϑ)∇ϱ1 + ∂ϑp(ϱ, ϑ)∇ϑ1

)
+
ϱε − ϱ
ε
∇G +

1
ε
ϱ∇G

−1
ε
∇(B · B1)−∇1

2
|B1|2

By Boussinesq relation,

− 1
ε2
∇p(ϱε, ϑε) +

1
ε
ϱε∇G +

1
ε2

curlBε × Bϵ

→ ϱ1∇G −∇1
2
|B1|2−∇π = ϱ1∇G −∇Π
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Formal derivation V: ME, part 2
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Formal derivation VI: HE, part 1

HE: recall

∂t(ϱεs(ϱε, ϑε)) + div(ϱεs(ϱε, ϑε)uε) + div
q(ϑε,∇ϑε)
ϑε

=
1
ϑε

(
ε2S(∇uε) : ∇uε −

q(ϑε,∇ϑε) · ∇ϑε
ϑε

+ ζ(ϑε)| curlBε|2
)
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Formal derivation VI: HE, part 1

HE: recall

ϱε
(
∂ts(ϱε, ϑε)) + div(s(ϱε, ϑε)uε)

)
− div

κ(ϑε)∇ϑε
ϑε

= O(ε2)

Expanding (recall ϱε = ϱ+ εϱ1, ϑε = ϑ+ εϑ1)

s(ϱε, ϑε) = s(ϱ, ϑ) + ε∂ϱs(ϱ, ϑ)ϱ
1 + ε∂ϑs(ϱ, ϑ)ϑ

1 +O(ε2),

we get (∂∗s̄ = ∂∗s(ϱ, ϑ))

(ϱ+ εϱ1)
(
ε∂ϱs̄∂tϱ

1 + ε∂ϑs̄∂tϑ
1 + div

[
uε
(
ε∂ϱs̄ϱ

1 + ε∂ϑs̄ϑ
1)])

−ε div κ(ϑε)∇ϑ
1

ϑε
= O(ε2),

in turn for ε→ 0

ϱ∂t
(
∂ϱs̄ϱ

1 + ∂ϑs̄ϑ
1)+ ϱ div [U(∂ϱs̄ϱ1 + ∂ϑs̄ϑ1)]− κ(ϑ)

ϑ
∇2ϑ1 = 0.
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Formal derivation VI: HE, part 1
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Formal derivation VII: HE, part 2

Gibbs’ relation ϑDs = De + pD(1/ϱ) yields

ϑ∂ϑs = ∂ϑe, ϑ∂ϱs = ∂ϱe −
p

ϱ2
.

Taking cross-derivatives wrt. ϱ and ϑ, we get

ϑ∂2ϱϑs = ∂
2
ϱϑe, ∂ϱs + ϑ∂

2
ϱϑs = ∂

2
ϱϑe −

∂ϑp

ϱ2
⇒ ϑ∂ϱs = −

ϑ

ϱ2
∂ϑp

from BR, we have

ϱ1 =
ϱ

∂ϱp
G − 1
∂ϱp
B · B1 − ∂ϑp

∂ϱp

(
ϑ1 −

 
D

ϑ1 dx
)
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Formal derivation VIII: HE, part 3

Collecting equations:

ϱ∂t
(
∂ϱs̄ϱ

1 + ∂ϑs̄ϑ
1)+ ϱ div [U(∂ϱs̄ϱ1 + ∂ϑs̄ϑ1)]− κ(ϑ)

ϑ
∇2ϑ1 = 0

ϑ∂ϑs̄ = ∂ϑe(ϱ, ϑ), ϑ∂ϱs̄ = −
ϑ

ϱ2
∂ϑp(ϱ, ϑ)

ϱ1 =
ϱ

∂ϱp
G − 1
∂ϱp
B · B1 − ∂ϑp

∂ϱp

(
ϑ1 −

 
D

ϑ1 dx
)

Putting all together, we find

ϱcp(ϱ, ϑ)(∂tϑ
1 +U · ∇ϑ1)− ϱϑα(ϱ, ϑ)U · ∇G − κ(ϑ)∇2ϑ1

= ϑα(ϱ, ϑ)∂ϑp(ϱ, ϑ)∂t

 
D

ϑ1 dx − ϑα(ϱ, ϑ)
(
∂t(B · B1) +U · ∇(B · B1)

)
,

where

α(ϱ, ϑ) =
1
ϱ

∂ϑp(ϱ, ϑ)

∂ϱp(ϱ, ϑ)
, cp(ϱ, ϑ) = ∂ϑe(ϱ, ϑ) +

ϑ

ϱ
α(ϱ, ϑ)∂ϑp(ϱ, ϑ)
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Target system

divU = 0, divB1 = 0,

∂ϱp(ϱ, ϑ)ϱ
1 + ∂ϑp(ϱ, ϑ)ϑ

1 + B · B1 = ϱG + ∂ϑp(ϱ, ϑ)

 
D

ϑ1 dx

ϱ(∂tU+U · ∇U)− µ(ϑ)∇2U+∇Π = ϱ1∇G ,
∂tB

1 + curl(B1 ×U) + curl(ζ(ϑ) curlB1) = 0,

ϱcp(ϱ, ϑ)(∂tϑ
1 +U · ∇ϑ1)− ϱϑα(ϱ, ϑ)U · ∇G − κ(ϑ)∇2ϑ1

= ϑα(ϱ, ϑ)∂ϑp(ϱ, ϑ)∂t

 
D

ϑ1 dx − ϑα(ϱ, ϑ)
(
∂t(B · B1) +U · ∇(B · B1)

)
,

where

α(ϱ, ϑ) =
1
ϱ

∂ϑp(ϱ, ϑ)

∂ϱp(ϱ, ϑ)
, cp(ϱ, ϑ) = ∂ϑe(ϱ, ϑ) +

ϑ

ϱ
α(ϱ, ϑ)∂ϑp(ϱ, ϑ)

BC: ϑ1|∂D = ϑB (recall ϑε|∂D = ϑ+ εϑB)



Model and known results Formal derivation Rigorous proof Comparison with known results The last slide

Target system

Some modifications for magnetic field:

0 = ∂tB
1 + curl(B1 ×U) + curl(ζ(ϑ) curlB1)

= ∂tB
1 + (U · ∇)B1 − (B1 · ∇)U− ζ(ϑ)∇2B1

Hence, also

∂t(B · B1) +U · ∇(B · B1) = B · (∂tB1 + (U · ∇)B1)
= B · ((B1 · ∇)U+ ζ(ϑ)∇2B1)
= (B1 · ∇)(B ·U)︸ ︷︷ ︸

=0 by B⊥U

+ ζ(ϑ)∇2(B · B1)

Final HE:

ϱcp(∂tϑ
1 +U · ∇ϑ1)− ϱϑαU · ∇G + ϑαζ∇2(B · B1)− κ∇2ϑ1

= ϑα∂ϑp(ϱ, ϑ)∂t

 
D

ϑ1 dx
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Relative energy

E
(
ϱ, ϑ, u,B

∣∣∣r ,Θ,U,H) =
1
2
ϱ|u−U|2 + 1

ε2
1
2
|B−H|2

+
1
ε2

[
ϱe(ϱ, ϑ)−Θ

(
ϱs(ϱ, ϑ)− rs(r ,Θ)

)
−
(
e(r ,Θ)−Θs(r ,Θ) +

p(r ,Θ)

r

)
(ϱ− r)− re(r ,Θ)

]
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Relative energy

Relative energy inequality:[�
D

E

(
ϱ, ϑ, u, B

∣∣r,Θ, U, H) dx]t=τ
t=0

+

� τ
0

�
D

Θ

ϑ

(
S(ϑ,∇u) : ∇u −

1

ε2

q(ϑ,∇ϑ) · ∇ϑ

ϑ
+
1

ε2
ζ(ϑ)| curl B|2

)
dx dt

¬ −
� τ
0

�
D

(
ϱ(u − U) ⊗ (u − U) +

1

ε2
p(ϱ, ϑ)I − S(ϑ,∇u)

)
: ∇U dx dt

−
1

ε2

� τ
0

�
D

(curl B × B) · U dx dt

−
� τ
0

�
D
ϱ

(
∂tU + U · ∇U −

1

ε
∇G

)
· (u − U) dx dt

−
1

ε2

� τ
0

�
D

(
ϱ

(
s(ϱ, ϑ) − s(r,Θ)

)
∂tΘ + ϱ

(
s(ϱ, ϑ) − s(r,Θ)

)
u · ∇Θ +

q(ϑ,∇ϑ)

ϑ
· ∇Θ

)
dx dt

+
1

ε2

� τ
0

�
D

((
1 −

ϱ

r

)
∂t p(r,Θ) −

ϱ

r
u · ∇p(r,Θ)

)
dx dt

−
1

ε2

� τ
0

�
D

(
B · ∂tH − (B × u) · curl H − ζ(ϑ) curl B · curl H

)
dx dt

+
1

ε2

� τ
0

�
D
H · ∂tH dx dt
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Relative energy

Relative energy inequality:[�
D

E
(
ϱ, ϑ, u,B

∣∣∣r ,Θ,U,H) dx]t=τ
t=0

+ sth. non-neg.

¬
� τ
0

�
D

sth
(
ϱ, ϑ, u,B

∣∣∣r ,Θ,U,H) dx dt

Goal: Grönwall argument, once getting[�
D

E
(
ϱ, ϑ, u,B

∣∣∣r ,Θ,U,H) dx]t=τ
t=0

+ sth. non-neg.

¬ C

� τ
0

�
D

E
(
ϱ, ϑ, u,B

∣∣∣r ,Θ,U,H) dx dt + small error
Idea: Consider

Eε = E
(
ϱε, ϑε, uε,Bε

∣∣∣ϱ+ εϱ1, ϑ+ εϑ1,U,B+ εB1
)
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Convergence

Outcome:[�
D

Eε dx
]t=τ
t=0

+ sth. non-neg. ¬ C

� τ
0

�
D

Eε dx dt +O(ε),

leading to �
D

Eε(τ) dx ¬ C

�
D

Eε(0) dx +O(ε);

hence, for any τ ∈ (0,T ), if
�
D
Eε(0) dx → 0, then

lim
ε→0

�
D

Eε(τ) dx = 0,

and

(uε, ϑε,Bε)→ (U, ϑ,B) in L2(0,T ;W 1,2(D)), ϱε → ϱ in L∞(0,T ; L2(D)),(
ϱε − ϱ
ε
,
ϑε − ϑ
ε
,
Bε − B
ε

)
→ (ϱ1, ϑ1,B1) in L2((0,T )× D)
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Scalings

Recall

Al =
uc

Bc/
√
ϱc

=
uc
cA
, Ma =

uc√
pc/ϱc

=
uc
cs
, Fr =

uc√
gLc

Usual Boussinesq scaling: ε1 = Ma = uc
cs
(= ∆ϱ

ϱ ), uc = ε
1
2
1

√
gLc

Spiegel/Weiss, and Bowker/Hughes/Kersalé: uc ≪ cs and cA ∼ uc ,

so set ε2 =
c2A
c2s
≪ 1. Then uc ∼ ε

1
2
2 cs , and ε1 = ε

1
2
2 ≡ ε; in turn

Al = 1, Ma = ε, Fr = ε
1
2

Our case: uc ≪ cs and cA ∼ cs ; thus, with ε̃2 = uc
cA
≪ 1, get

uc = ε1cs = ε̃2cA ∼ ε̃2cs , hence ε1 = ε̃2 ≡ ε and

Al = ε, Ma = ε, Fr = ε
1
2 .
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“Mathematical” magneto-OB

Recall our target system:

divU = 0, divB = 0,

ϱ(∂tU+ (U · ∇)U)− µ∇2U+∇Π = ϱ∇G ,
∂tB+ (U · ∇)B− (B · ∇)U− ζ∇2B = 0,

ϱcp(∂tϑ+U · ∇ϑ)− ϱϑαU · ∇G + ϑαζ∇2(B · B)− κ∇2ϑ

= ϑα∂ϑp(ϱ, ϑ)∂t

 
D

ϑ dx ,

∂ϱp(ϱ, ϑ)ϱ+ ∂ϑp(ϱ, ϑ)ϑ+ B · B = ϱG + ∂ϑp(ϱ, ϑ)

 
D

ϑ dx
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“Physical” magneto-OB

(See Spiegel/Weiss: “Magnetic Buoyancy and the Boussinesq
Approximation”, 1982; Bowker/Hughes/Kersalé “Incorporating velocity
shear into the magneto-Boussinesq approximation”, 2014):

divU = 0, divB = 0,

ϱ(∂tU+ (U · ∇)U)− µ∇2U+∇Π = −ϱge3 + (B · ∇)B,
∂tB+ (U · ∇)B− (B · ∇)U− ζ∇2B = −H−1ϱ U3B,

ϱcp(∂tϑ+U · ∇ϑ)−(∂tp +U · ∇p)− κ∇2ϑ = −U3β,

p = Rϱϑ, Π = p + pm = Rϱϑ+
1
2
|B|2,

∂tp +U · ∇p = −ϱgU3 − (∂tpm +U · ∇pm),
∂tpm +U · ∇pm = B · [(B · ∇)U+ ζ∇2B]

For us: (B · ∇)B = b(t, x1, x2) · ∂3b(t, x1, x2) = 0,
−ge3 = ∇[x 7→ −gx3] = ∇G , H−1ϱ = − ddz log(ϱ) = 0,
β = ϑγ−1 ddz log(p ϱ

−γ) = 0 ⇒ CE, ME, IE consistent!
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Comparison of HE

Our HE:

ϱcp(∂tϑ+U · ∇ϑ)− ϱϑαU · ∇G + ϑαζ∇2(B · B)− κ∇2ϑ = ϑα∂ϑp(ϱ, ϑ)∂t
 
D

ϑ dx

Physical HE (according to Spiegel/Weiss):

ϱcp(∂tϑ+U · ∇ϑ)−(∂tp +U · ∇p)− κ∇2ϑ = 0,

p = Rϱϑ, Π = p + pm = Rϱϑ+
1
2
|B|2,

∂tp +U · ∇p = −ϱgU3 − (∂tpm +U · ∇pm),
∂tpm +U · ∇pm = B · [(B · ∇)U+ ζ∇2B]
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Comparison of HE
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ϱcp(∂tϑ+U · ∇ϑ)− ϱϑαU · ∇G + ϑαζ∇2(B · B)− κ∇2ϑ = ϑα∂ϑp(ϱ, ϑ)∂t
 
D

ϑ dx

Physical HE (according to Spiegel/Weiss):

ϱcp(∂tϑ+U · ∇ϑ) + ϱgU3 + B · [(B · ∇)U+ ζ∇2B]− κ∇2ϑ = 0,
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Comparison of HE

Our HE:

ϱcp(∂tϑ+U · ∇ϑ)− ϱϑαU · ∇G + ϑαζ∇2(B · B)− κ∇2ϑ = ϑα∂ϑp(ϱ, ϑ)∂t
 
D

ϑ dx

Physical HE (according to Spiegel/Weiss):

ϱcp(∂tϑ+U · ∇ϑ)− ϱU · ∇G + [(B · ∇)(B ·U)︸ ︷︷ ︸
=0

+ ζ∇2(B · B)]− κ∇2ϑ = 0
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Comparison of HE

Our HE:

ϱcp(∂tϑ+U · ∇ϑ)− ϱϑαU · ∇G + ϑαζ∇2(B · B)− κ∇2ϑ = ϑα∂ϑp(ϱ, ϑ)∂t
 
D

ϑ dx

Physical HE (according to Spiegel/Weiss):

ϱcp(∂tϑ+U · ∇ϑ)− ϱU · ∇G + ζ∇2(B · B)− κ∇2ϑ = 0

Recall p = Rϱϑ such that ϑα = ϑ
ϱ
∂ϑp(ϱ,ϑ)

∂ϱp(ϱ,ϑ)
= 1, so 1:1 the same up to

non-local term

→ no boundary conditions in Spiegel/Weiss
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Summary

Formal and rigorous proof of magneto-Boussinesq with Dirichlet
temperature boundary conditions

Completely consistent with Spiegel/Weiss and
Bowker/Hughes/Kersalé (special case G = −gx3, p = Rϱϑ, no BC,
different measuring of cA)

Wider class of pressure functions, non-local term

Dziękuję za uwagę!
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