Importance of the interconnection of the day- and night- chemistry of α-pinene - experiments in the ACD-C aerosol smog chamber

Agata Kołodziejczyk

Leibniz Institute for Tropospheric Research, Leipzig, Germany Atmospheric Chemistry Department (ACD) Magata@tropos.de

Atmospheric physics seminar, 19.11.2021

Research area

> Aerosol smog chamber experiments to investigate the aerosol transformation and its physicochemical properties;

Importance of the interconnection of the day- and night- chemistry of α-pinene – experiments in the ACD-C aerosol smog chamber

PRESENTATION CONTENT:

- Secondary Organic Aerosol (SOA) overview
- Aerosol Smog Chamber set-up (ACD-C)
- > Interconnection of the day- and night- chemistry of α -pinene project motivation
- Conducted experiments (experimental protocol)
- **Secondary Organic Aerosol formation from α-pinene oxidation**
- Summary

Atmospheric Aerosols - sources

Los Angeles^[2]

Warsaw^[1]

Silesian Beskids^[3]

Eyjafjallajökull (Iceland)^[3]

Examples of different types of atmospheric aerosol

[5] John H. Seinfeld, Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition;
[6] Finlayson-Pitts & Pitts, Chemistry of the Atmosphere;

Impact on:

- Radiation balance of our planet
- Climate changes
- Human health and quality of life^[4]

Total PM emissions (primary and secondary) from different sources. The emission units are: Tg/year, while for BLZO it is TgC/year, for DMS TgS/year

Aerosol	Type of source: Natural (N) or anthropogenic (A) source	Emission scale ^[5,6]
Mineral Dust	N,A	1000 - 4000
Sea Salt	Ν	1400 - 6800
Volcanoes	Ν	50 (changing)
Dimethyl Sulfide (DMS)	N,A	10 - 40
Forest Fires	N,A	3 - 150
Antropogenic dust	А	290
Biogenic Volatile Organic Compounds	Ν	500 – 1200
-	Total	3000 - 13000

Atmospheric Aerosols in Europe

- In winter, the largest contribution over the whole domain comes from biomass burning from residential and agriculture activities (overall 43%);
- In summer, the biogenic SOA contributed up to 55 % of total OA in Europe;
- The contributions of gasoline and diesel vehicles to total OA were rather small compared to the other sources, with an average fraction of $\sim 5 \%$ (3.9 % in winter and 6.3 % in summer for the sum of POA and SOA)

Modeled regional variations of primary and secondary organic aerosols sources in Europe in winter (December–January–February) and summer (June–July–August).^[7]

Atmospheric Aerosols in Europe

Relative contributions of different sources (POA and SOA) to total OA in winter (a, b) and summer (c, d). The winter and summer results are the averages of December–January– June-July-August, February and respectively. OA from biogenic sources is all secondary so the POA panels for biogenic sources are empty.

Secondary Organic Aerosol

Relative contributions of biogenic SOA to total OA in winter and summer. The winter and summer results are the averages of December–January–February and June–July–August^[7]

Atmospheric oxidant and its average concentration^[8]

Oxidant	$\mathbf{k}_{Ox+\beta\text{-pinene}}$	Average [Ox] (molecule/cm)
0 ₃	1.5 × 10 ⁻¹⁷	7 × 10 ¹¹ (30 ppb) (24h average)
ОН	7.9 × 10 ⁻¹¹	1 × 10 ⁶ (0.04 ppt) (12h average)
NO ₃	2.5 × 10 ⁻¹²	2.4 × 10 ⁸ (10 ppt) (12h average)

Biogenic emissions: 500 – 1200 Mt C/year

Oxidation of volatile organic compounds (VOCs) by OH, O₃ and NO₃ yields semi-volatile reaction products

Diagram of the SOA particle formation and growth processes in the Earth's tropospheric^[3]

[3] Source: ichf.edu.pl/r_act/hab/Szmigielski_autoreferat; [7] Jiang, J et al. 'Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme, Atmos. Chem. Phys., 19, 15247–15270, 2019.; [8] Fry, J. L., et al., Atmos. Chem. Phys., 9, 1431–1449.

Secondary Organic Aerosol Chemistry

[9] M. Hallquist et al.: SOA: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, 2009

Precursors of Secondary Organic Aerosol

Biogenic SOA precursors

Earth Atmospehere = Chemical reactor

Aerosol Smog Chamber

ACD-C with its twin chamber set-up is a research infrastructure with broad online and offline instrumentation to study:

Aerosol Smog Chamber Instrumentation

Particle - phase

On-line measurements of:

- Particle size distribution
- Patricle compositions
- Time series of Org, NO_3 , SO_4 , NH_4 components

Aerosol Mass Spectrometer (AMS)^[10]

Mobility Particle Size Spectrometer (MPSS)

ACD-C smog chamber

Trace gas analysers: (Nox, O₃, SO₂, CO₂, CO, CH₄)

On-line measurements of:

- Precursor consumption
- Gas-phase organic composition
- Chemical formula of measured compounds

Proton-Transfer-Reaction Time of Flight Mass Spectrometer (PTR-ToFMS)^[11]

Chemical Ionization-Atmospheric Pressure Time of Flight Mass Spectrometer (CI-APi-TOFMS)^[11]

Project

- The chemistry that takes place during the day time influences the subsequent night-time chemistry and vice versa;
- In the evening when the OH radical production drops down, the VOCs and their oxidation products that remain in the atmosphere are subjected to the nighttime chemistry in which the NO₃ radicals and ozone are most important;
- $\succ \alpha$ -pinene is the second foremost release Biogenic Volatile Organic compound.

The inter-connection of day- and night-time chemistry is a so-far unknown pathway of SOA formation

Main points:

> Understand the interconnection of day- and nighttime α -pinene chemistry

Particle-phase

Example of HR-ToF-AMS measurements of the α -pinene reaction. Time series of AMS organic (Org), nitrate (NO₃), sulfate (SO₄) and ammonium (NH₄) signals.

- Exp. Type A: After day-time when 10% pinene is in the system (from 4 8 ppb) new particles are still produced;
- > Exp. Type A: Organic mass is increasing together with increasig RH;
- Exp. Type B: SOA yield is slighty increasing together with increasig RH (from 8% to 12%);
- Exp. Type B: There is strong decay of organic mass in day-time period, which can be connected with volatilization proces or further reaction of organonitrate group.^[12]

15 -

12 -

Yield (%)

SOA

- ⇒ D. K. Farmer et al. 2010: "Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere"
- \Rightarrow (Organonitrates: (ON, i.e., R<u>ONO₂</u>))

Kiendler-Scharr et al. (2016): "[...] determine the fraction of particulate organic nitrate (pOrgNO3_{frac}) in the measured total nitrate"

$$pOrgNO3_{frac} = \frac{\left(1 + R_{OrgNO3}\right) * \left(R_{measured} - R_{calib}\right)}{\left(1 + R_{measured}\right) * \left(R_{OrgNO3} - R_{calib}\right)}$$
$$pOrgNO3_{mass} = pOrgNO3_{frac} * NO_{3total}$$

Ratios NO₂⁺ / NO⁺:

 R_{orgNO3} - organonitrate compounds (0.1) $R_{measured}$ - measured ratio R_{calib} - ammonium nitrate signal during AMS calibration. Instrument depend (0.31)

- Exp. Type A: ON are form, but during the dark conditions the increase is sharper and then stays fairly constant;
- Exp. Type B: the NO₃/Org ratio stays fairly constant during the NO₃ reaction, which suggests that tertiary ON are not formed in the NO₃+ α -pinene reaction
- Exp. Type B: the loss of particle-phase ON via hydrolysis results a decrease in the NO₃/Org ratio due to the formation (and subsequent evaporation) of nitric acid.^[13]

Off-line analysis of particle-phase

Quantified compounds

- Filter sample were taken after 1h of each reaction;
- All compounds were quantified using authentic standards;
- SOA- bond organic peroxides were quantified using UV-vis method^[14]

Off-line analysis of particle-phase

Quantification results using LC-ToF-MS system

- Filter sample were taken after 1h of each reaction;
- All compounds were quantified using authentic standards;
- SOA bond organic peroxides were quantified using UV-vis method^[14]

- > Important fraction in both type of experiment is **pinonaldehyde** (known as a first generation product of α -pinene oxidation) and **pinonic acid** (known as a second generation product);
- ▶ For NO₃ radical reaction only 20% of fraction is identify, which can be connected with ON compound group;
- Compounds which cover smaller fraction shows interesting correlation only with one type of radicals (like MBTCA, Terebic acid, Homoterpenylic acid acetate);
- Exp. Type A: Surprisingly SOA-bond peroxides was not significant fraction when OH radical reaction was the starting periode;
- Exp. Type B: SOA-bond peroxides constitute almost 30% of fraction during the OH radical reaction;

Gas-phase – PTR-ToF-MS measurement

Time series of m/z 151 signal recorded with PTR-MS for both Typ of experiments.

- m/z 151 with m/z 169 do not correlate each other, that shows during the OH radical reaction more propable product correspond to m/z 151 is myrtenal;
- For NO₃ radical reaction pinonaldehyde is the most important first-generation oxidation product;

Summary

- The interconnection of day- and night-time chemistry is complicated but crucial to understand the BSOA formation;
- Particles which are form during the day-time and then react further in the night-time have different composition then particles form in vice-versa process;
- SOA bond peroxides are important group of compounds which are possibly form from ON compounds (night-time chemistry);
- After the ON are created during the night-time process, they are lost via hydrolysis reaction, which is observed from a decrease in the NO₃/Org ratio (AMS measurements);
- Evaporation processes can be important pathway of particle mass deacrease, but this statement needs furter studies;

prof. Hartmut Herrmann

Group members of Atmospheric Chemistry Department of TROPOS

Thank you for you attention!

