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A schematic of a boundary layer. The values of a field, such as velocity, U ,
may vary rapidly with height in a boundary in order to satisfy the boundary

conditions at a rigid surface. The parameter & is a measure of the boundary
layer thickness, and H is a typical scale of variation away from the boundary.



Boundary layer.

In classical fluid dynamics, a boundary layer is the layer in a nearly inviscid fluid next to a surface
in which frictional drag associated with that surface is significant (term introduced by Prandtl,
1905).

Such boundary layers can be laminar or turbulent, and are often only mm thick.

In atmospheric science, a similar definition is useful. The atmospheric boundary layer (ABL,
sometimes called P[lanetary] BL) is the layer of fluid directly above the Earth’s surface in which
significant fluxes of momentum, heat and/or moisture are carried by turbulent motions whose
horizontal and vertical scales are on the order of the boundary layer depth, and whose
circulation timescale is a few hours or less (Garratt, p. 1).

A similar definition works for the ocean, but for a layer just below the ocean surface!

The complexity of this definition is due to several complications compared to classical aerodynamics.

1) Surface heat exchange can lead to thermal convection
i) Moisture and effects on convection

iii) Earth’s rotation

Iv) Complex surface characteristics and topography.

BL is assumed to encompass surface-driven dry convection. Most workers (but not all) include
shallow cumulus in BL, but deep precipitating cumuli are usually excluded from scope of BLM
due to longer time for most air to recirculate back from clouds into contact with surface.

BLM also traditionally includes the study of fluxes of heat, moisture and momentum between

the atmosphere and the underlying surface, and how to characterize surfaces so as to predict these
fluxes (roughness, thermal and moisture fluxes, radiative characteristics). Includes plant canopies 5
as well as water, ice, snow, bare ground, etc.



Ludwig Prandtl with
his fluid test channel,
1904




Atmospheric boundary layer
sublayers:

1) Interfacial sublayer - in which molecular
viscosity/diffusivity dominate vertical fluxes
ii) Inertial layer - in which turbulent fluid motions dominate
the vertical fluxes, but the dominant scales of motion are
still much less than the boundary layer depth.

This is the layer in which most surface wind measurements
are made.

 Layers (i) + (i) comprise the surface layer. Coriolis turning

of the wind with height is not evident within the surface

layer. 2 h R
=01k

i) Outer layer - turbulent fluid motions with scales of

motion comparable to the boundary layer

depth (‘large eddies’).

* At the top of the outer layer, the BL is often capped by afr ———
entrainment zone in which turbulent

Garratt fig 1.1

Outer (Ekman) layer

Inner (surface) Inertial
layer sublayer

_______ ¥ _ Interfacial

(roughness}
|_l ﬂ rl [] I_lT sublayer

BL eddies are entraining non-turbulent free-atmospheric air.
This entrainment zone is often associated with a stable
layer or inversion.

» For boundary layers topped by shallow cumulus, the outer
layer is subdivided further into subcloud, transition,
cumulus and inversion layer.



Ekman layer

Vagn Walfrid Ekman
(3 May 1874 — 9 March 1954)
a Swedish oceanographer.

In many boundary layers in non-rotating flow the dominant balance in the momentum
equation is between the advective and viscous terms.

In large scale atmospheric and oceanic flow the effects of rotation are large, and this
results in a boundary layer, known as the Ekman layer, in which the dominant balance is
between Coriolis and frictional terms.

Thus consider the effects of friction on geostrophic flow.

In practice a balance occurs between the Coriolis terms and the stress due to small-scale
turbulent motion, and this gives rise to a boundary layer that has a typical depth of

tens to hundreds of meters.

The atmospheric Ekman layer occurs near the ground, and the stress at the ground itself is
due to the surface wind (and its vertical variation). In the ocean the main Ekman

layer is near the surface, and the stress at ocean surface is largely due to the presence s
of the overlying wind.



ASSUMPTIONS:

1) The Ekman layer is Boussinesq. This is a very good assumption for the ocean, and
a reasonable one for the atmosphere if the boundary layer is not too deep.

2) The Ekman layer has a finite depth that is less than the total depth of the fluid,
this depth being given by the level at which the frictional stresses essentially van-
ish. Within the Ekman layer, frictional terms are important, whereas geostrophic
balance holds beyond it.

3) The nonlinear and time dependent terms in the equations of motion are negligible,
hydrostatic balance holds in the vertical, and buoyancy is constant, not varying in
the horizontal.

4) Friction can be parameterized by a viscous term
of the form p 'z /8- = Ad*u/3z* where Ais constant and 7 is the stress.

In laboratory A may be the molecular viscosity, whereas in the atmosphere
and ocean it is a so-called eddy viscosity.

Sometimes symbol “K” is used instead of “A” and the above is called “K-theory”.



Equations of motion and
scaling

Frictional-geostrophic balance in the
horizontal momentum equation is:

0%u
fxu=-V,0+ A—

dz2’

The vertical momentum equation is
hydrostatic balance.
Since buoyancy is constant, we may

without loss of generality write this as: 1000
990

do

= ().
dz

The mass continuity equation is in
form:

V.v = 0.
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d*u

fxu=-— qu-l-Aa:z.

Let's non-dimensionalize the equations:

s

(w.v) = U®@,0), (x.y)=LEP)., f=/fof. z=H: ¢=dp,

where hatted variables are non-dimensional and H is certain scaling for the height.

Geostrophic balance gives:

f xug =-—-V,&

® = foUL.

And the non-dimensional equation of motion takes the form:

- 2d
V¢ + Ek—,

0z

[ xu

Where Ek is the Ekman number:

Ek—( A )
~ \ foH?




The EkKman number

It determines the importance of frictional terms in the horizontal momentum equation.
If Ek<<1 then the friction is small in the flow interior where =z — ®(1).

But..... the friction term cannot necessarily be neglected in the boundary layer because
it is of the highest differential order in the equation, and so determines the boundary
conditions.

Case when Ek is small but the second term on the right-hand side of the momentum
equation remains finite is a singular limit, meaning that it differs from the case with
Ek=0.

If Ek is close or above 1 friction is important everywhere.

Momentum balance in the Ekman layer.

The fluid lies above a rigid surface at z= 0.

Far away from the boundary the velocity field is in geostrophic balance.

We write the velocity field and the pressure field as the sum of the interior geostrophic
part, plus a boundary layer correction (subscript E):

’?=’?g+ﬁE- ‘ﬁ'=¢g+¢.€~

negligible above the boundary layer.



Since d¢g/0Z = 0,and d¢g/dZ = 0 ,remembering that ¢ = 0
away from the boundary we conclude that there is no boundary layer in the pressure

field.
Then the dominant force balance in the Ekman layer is thus between the Coriolis force

and friction:

0T
f xug=—.
az
) A
Jd°u g E.{’E( , 2)
fxup=A=" foH
- 0
f xiig = Ek jj
dz2

It is evident this equation can only be satisfied if Z # @(1), implying that /{ is not a
proper HCdllﬂg for z in the boundary ldyer Rather, if the vertical scale in the Ekman
layer 1s 5 (meaning =z ~ E:] we must have § ~ Ek'/2. In dimensional terms this means

the thickness of the Ekman layer is

2 1/2
§ = HS = HEK'? § — (i) "



e ()

That is, the Ekman number 1s equal to the square of the ratio of the depth of the Ekman
layer to an interior depth scale of the fluid motion. In laboratory flows where A 1s the
molecular viscosity we can thus estimate the Ekman layer thickness, and if we know
the eddy viscosity of the ocean or atmosphere we can estimate the thickness of their
respective Ekman layers. We can invert this argument and obtain an estimate of A if we

know the Ekman layer depth. In the atmosphere, deviations from geostrophic balance

are very small in the atmosphere above 1 km, and using this gives 4 ~ 10°m?s™!. In

the ocean Ekman depths are about 50 m or less, and eddy viscosities about 0.1 m? s~!.
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Transport in the EKman layer

In the Ekman layer itself we have

—

f Xug = —
dz

with friction zero at the edge of the Ekman layer.

Consider either a top or bottom Ekman layer, and integrate over its thickness:

f x Mg = :Ef _:Eh

Mg =/ ugdz
E

Mk is the ageostrophic transport in the Ekman layer, and its, in a given latitude,
depends on a difference between stress on the top and bottom of the layer.

The stress is zero on the top of the atmospheric Ekman layer and on the bottom of the
oceanic Ekman layer.

13



1
Top Ekman Layer: Mg = —?k X Ty
1 .
Bottom Ekman Layer: Mp = —k x 18

The transport in the Ekman layer is thus at right-angles to the stress at the surface. This
has a simple physical explanation: integrated over the depth of the Ekman layer the
surface stress must be balanced by the Coriolis force, which in turn acts at right angles
to the mass transport. This result is particularly useful in the ocean, where the stress at
the upper surface is primarily due to the wind, and can be regarded as independent of the
interior flow. If f 1s positive, as in the Northern hemisphere, then an Ekman transport
1s induced 90° to the right of the direction of the wind stress. This has innumerable
important consequences — for example, in inducing coastal upwelling when, as 1s not
uncommon, the wind blows parallel to the coast. Upwelling off the coast of California
is one example. In the atmosphere, however, the stress arises as a consequence of the

interior flow, and we need to parameterize the stress in terms of the flow in order to
calculate the surface stress.
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Ekman pumping along the equator.
(a) shows a plan view of the
prevailing surface wind and resulting
water transport in the ocean's Ekman
layer. (b) is a corresponding cross
section, showing the upwelling and
resulting SST anomalies.
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Mult:lspcctral SEA‘W]FS sate]htc image at 11: 20- UTC on 16 Sep.t 1997 The
ereytones reveal cloudiness (visible spectrum) while the colours display sea
surface temperature in cloud-free areas. Note: red is colder and blue warmer.

Ekman pumping is also important along
coasts, e.g. along the west coast of South 15
Africa and Namibia



Vertical velocity induced by Ekman layer (Ekman pumping)

The mass conservation equation is

du du dw
— 4+ — 4+ — =10
dx  dy dz

It can be integrated across the Ekman layer depth resulting in:
V-M, = —(w; —wp)

ﬁrfr=f udz = (Mg +upg)dz= Mz + Mg,
I Ek

Taking momentum equation we get:
1 o —
kx(iwlf—iwlg}= ?(Tf-rh).

Taking the curl (the length of rotation operation) one obtains:

V- (M; — M) = curl;[(T, — Tp)/f]

curl; operator on a vector A4 is defined by curl; 4 = d, A4, — d, Ax.

S xXxMg=7,—-7p

Mg = j ngdz
Ek

16



Finally, remembering that V- -M;, = —(w; — wp) we get:

—

Ty
wp = curly — + V- Mg, w; = curl:

In the above

V-Mg = —BMg/f

is the divergence of the geostrophic transport in the Ekman layer, often small compared
to the other terms.

Thus, friction induces a vertical velocity at the edge of the Ekman layer, proportional to
the curl of the stress at the surface,

Numerical models sometimes do not have the vertical resolution to explicitly resolve

an Ekman layer, and the above provides a means of parameterizing the Ekman layer in
terms of resolved or known fields.

It is particularly useful for the top Ekman layer in the ocean, where the stress can be
regarded as a given function of the overlying wind.

17



Ekman Transport is the net motion of fluid as the result of a balance between Coriolis and

turbulent drag forces.
In the picture above, valid for the ocean the wind blowing from South to North creates a

surface stress and a resulting Ekman spiral is found below it in the water column.

18



Specific solution: a bottom (atmospheric) Ekman layer

The frictional-geostrophic balance may be written as

02u

fx(u—ng)=A.}"E

[

: _ dop Eic;b)
Jug,vg) = (_HH :

With no thermal wind 9#g/ 9z = dvg/dz = 0.

Boundary conditions and solution
Appropriate boundary conditions for a bottom Ekman layer are:

At z=10: n=10 =0 (the no slip condition)

AS z — o0 U=uUg, V=1

Consider solution for geostrophic balance in the form:
u=ug+ Age"”, v = vy + Boe™*

(a geostrophic interior).

(2.296a)
(2.296b)

19



Then, after substitution
Ao f — BagAa? =0

wcodn Aot — Bof =10

which can be solved for
1."1'4 _ _.f-EXAE'-

and gives solutions for wind components:

U= Ug— e %/ lug cos(z/d) + vg sin(z/d)]
vy + o A lug sin(z/d) — vy cos(z/d)]

v

d = 24/f

20



Then, after substitution
Ao f — BagAa? =0
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Figure 2.10 The ide-
alised Ekman layer so-
lution in the lower at-
mosphere, plotted as a
hodograph of the wind
components: the arrows
show the velocity vectors
at a particular heights,
and the curve traces out
the continuous wvariation
of the velocity. The val-
ues on the curve are of
the nondimensional wvari-
able z/d, where d =
(24//)1/2, and v, is cho-
sen to be zero.
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Figure 2.11
Solutions for a

bottom Ekman layer
with a given flow
in the fluid interior
(left), and for a top
Ekman layer with a
given surface stress
(right), both with
d = 1. On the left we

have ug = 1, vg = 0.
On the right we have
Hg = Vg =0,T), =0

and V27, /(fd) = 1.
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Figure 2.12 A bottom Ekman

layer, generated from an east-

wards geostrophic flow above. An
overbar denotes a vertical integral
over the Ekman layer, so that — f x
wg is the Coriolis force on the

vertically integrated Ekman veloc-

ity. M g is the frictionally induced
boundary layer transport, and 1 is
the stress.
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OCEAN
Ekman pumping/suction

*Convergence/divergence of the Ekman transport drives vertical motions:

@ — _vh - U, assume w=0 at z=0
0z ‘
Wef = 1 \.,_/'h . ME Wel vertical velocity
prﬁf at the beneath
the Ekman layer
1 . Teind Vertical motions
Wep, = —2 - V associated with
p:_“ﬁ, f f the curl of the
wind-stress

‘When .. < () the Ekman vertical velocity is known as the Ekman pumping

‘When Wep > () the Ekman vertical velocity is known as the Ekman suction

From Stanford



In the atmosphere:

\

O GRN)
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Fig. 5.6 Schematic surface wind pattern (arrows) associated with high- and low-pressure centers in
the Northern Hemisphere. Isobars are shown by thin lines, and L and H designate high- and
low-pressure centers, respectively. After Stull (1988).

(from Holton) 2



L

f

1

A
= \ * L
A i
DE{ — ., ) L

#

Fig. 5.7 Streamlines of the secondary circulation forced by frictional convergence in the planetary

boundary layer for a cyclonic vortex in a barotropic atmosphere. The circulation extends
throughout the full depth of the vortex.

In the atmosphere Ekman pumping in low pressure systems is an effective mechanism of

vertical momentum transport slowing down atmospheric circulations. -
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Fig. 5.8 Streamlines of the secondary circulation forced by frictional convergence in the planetary
boundary layer for a cyclonic vortex in a stably stratified baroclinic atmosphere. The circu-
lation decays with height in the interior.

Efficiency and range of this effects depends on the static stability of the troposphere.
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