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The Quasi-Geostrophic Vorticity Equation

The vertical component of vorticity can be approximated geostrophically:

The above equation  can be used to determine ζg (x, y) from a known field  Φ(x, y).
Alternatively, it can be solved by inverting the Laplacian operator to determine from a known 
distribution of ζg , provided that suitable conditions on Φ are specified on the boundaries of 
the region in question.

This invertibility is one reason why vorticity is such a useful forecast diagnostic; if the 
evolution of the vorticity can be predicted, then inversion of the equation yields the evolution 
of the geopotential field, from which it is possible to determine the geostrophic wind and 
temperature distributions.

Since the Laplacian of a function tends to be a maximum where the function itself is a 
minimum, positive vorticity implies low values of geopotential and vice versa.



3

The quasi-geostrophic vorticity equation can be obtained from the x and y components of 
the quasi-geostrophic momentum equation:

Taking spatial derivatives and using the fact that the divergence of the geostrophic wind  
vanishes,  yields the vorticity equation:

which states that the local rate of change of geostrophic vorticity is given by the sum of 
the advection of the absolute vorticity by the geostrophic wind plus the concentration or 
dilution of vorticity by stretching or shrinking of fluid columns (the divergence effect).
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The vorticity tendency due to vorticity advection  may be rewritten as:

The two terms on the right represent the geostrophic advections of relative vorticity and 
planetary vorticity, respectively. For disturbances in the westerlies, these two effects 
tend to have opposite signs, as illustrated schematically:



5

In order to investigate details of vorticity advection consider  geopotential in 
sinusoidal form:

The parameters Φ0 , U , and A depend only on pressure, and the wave numbers k 
and l are defined as k = 2π/Lx and l = 2π/Ly with Lx , Ly the wavelengths in the x 
and y directions, respectively.
The geostrophic wind components are then given by

and is the geostrophic wind due to the synoptic 
wave disturbance. Then

It can be shown that in this simple case the advection of relative vorticity by the 
wave component of the geostrophic wind vanishes:

and the advection of relative vorticity is:
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Consequently the advection of planetary vorticity can be expressed as
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ROSSBY (PLANETARY) WAVES

are of most importance for large-scale meteorological processes in mid latitudes.

In an inviscid barotropic fluid of constant depth, the Rossby wave is an absolute 
vorticity-conserving motion due to the variation of the Coriolis parameter with 
latitude.
In a baroclinic atmosphere, the Rossby wave is a potential vorticity conserving 
motion that owes its existence to the isentropic gradient of potential vorticity.
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Consider a closed chain of barotropic fluid parcels along a meridian. The absolute 
vorticity η is given by η = ζ + f . Assume that ζ = 0 at time t0. Imagine the meridional 
displacement of a fluid parcel  by δy from the original latitude at t1. Then

which,  recalling β=df/dy gives

From the above  it is evident that if the chain of parcels is subject to a sinusoidal 
meridional displacement under absolute vorticity conservation, the resulting perturbation 
vorticity will be positive for a southward displacement and negative for a northward 
displacement.

This perturbation induces a meridional velocity field advecting the chain of fluid parcels 
southward west of the vorticity maximum and northward west of the vorticity minimum.
The fluid parcels oscillate back and forth about  equilibrium latitude. The pattern of vorticity 
maxima and minima propagates to the west, constituting a Rossby wave.

Let  δy = a sin [k (x − ct)], where a is the maximum northward displacement. Then
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Free Barotropic Rossby Waves

The dispersion relationship for barotropic Rossby waves may be derived formally by 
finding wave-type solutions of the linearized barotropic vorticity equation:

For a midlatitude β plane this equation has the form:

Assume that the motion consists of a constant basic state zonal velocity plus a small 
horizontal perturbation:

Define perturbation streamfunction:
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The perturbation form of the vorticity equation is:

We seek a solution of the form:

and find that

Recalling that c = ν/k, we find that the zonal phase speed relative to the mean wind is

The above reduces to c = −β /k2 when the mean wind vanishes and l → 0.

The Rossby wave zonal phase propagation is always westward relative to the mean zonal 
flow and phase speed depends inversely on the square of the horizontal wavenumber. 
Therefore, Rossby waves are dispersive waves whose phase speeds increase rapidly with 
increasing wavelength.
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For a typical midlatitude synoptic-scale disturbance, with similar meridional and zonal 
scales (l ≈ k) and zonal wavelength of order 6000 km, the Rossby wave speed relative to 
the zonal flow  is approximately −8 ms−1.
Because the mean zonal wind is generally westerly and greater than 8 ms−1, synoptic-scale 
Rossby waves usually move eastward, but at a phase speed relative to the ground that is 
somewhat less than the mean zonal wind speed.

For longer wavelengths the westward Rossby wave phase speed may be large
enough to balance the eastward advection by the mean zonal wind so that the
resulting disturbance is stationary relative to the surface of the earth.

The free Rossby wave solution becomes stationary when

The zonal group velocity for a Rossby wave may be either eastward or westward relative
to the mean flow, depending on the ratio of the zonal and meridional wave numbers (long 
waves -> westward, short waves -> eastward).

Stationary Rossby modes (i.e., modes with c = 0 ) have zonal group velocities that are 
eastward relative to the ground.
Synoptic-scale Rossby waves also tend to have zonal group velocities that are eastward 
relative to the ground. For these waves, advection by the mean zonal wind is generally 
larger than the Rossby phase speed so that the phase speed is also eastward relative to 
the ground, but is slower than the zonal group velocity.
This implies that new disturbances tend to develop downstream of existing disturbances,
which is an important consideration for forecasting.
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Forced Topographic Rossby Waves

Forced stationary Rossby modes are of primary importance for understanding the 
planetary scale circulation pattern. They  may be forced by longitudinally dependent 
diabatic heating patterns or by flow over topography, e.g. by flow over the Rockies and 
the mountains of central Asia.

As the simplest possible dynamical model of topographic Rossby waves, we use the 
barotropic potential vorticity equation for a homogeneous fluid of variable depth:

We assume that the upper boundary is at a fixed height H , and the lower boundary is at 
the variable height hT (x, y) where |hT | << H. We also use quasi-geostrophic scaling so 
that |ζg | <<f0. We can then approximate the above  by

Which after linearization and use of β-plane approximation gives:
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We  examine solutions  for the special case of a sinusoidal lower boundary:

and represent the geostrophic wind and vorticity by the perturbation streamfunction

The equation has a  steady-state solution with complex amplitude given by:

The streamfunction is either exactly in phase (ridges over the mountains) or exactly out of 
phase (troughs over the mountains), with the topography depending on the sign of K2−Ks

2. 
For long waves (K < Ks ) the topographic vorticity source  is balanced primarily by the 
meridional advection of planetary vorticity (the β effect).
For short waves (K > Ks ) the source is balanced primarily by the zonal advection of relative 
vorticity.
The topographic wave solution  has the unrealistic characteristic that when the wave number 
exactly equals the critical wave number Ks the amplitude goes to infinity.
This singularity occurs at the zonal wind speed for which the free Rossby mode becomes 
stationary. Thus, it may be thought of as a resonant response of the barotropic system.
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Forced Topographic Rossby Waves
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Energy conversion in the atmosphere



Available Potential Energy

If we let dEI be the internal energy in a vertical section of the column of height dz, then 
from the definition of internal energy

The gravitational potential energy  is just

and the total potential energy fulfills

i.e. in  hydrostatic atmosphere the total potential energy can be obtained EI or EP alone.



Now for an adiabatic process, total energy is conserved:
If the air masses are initially at rest EK = 0.
Thus, if we let primed quantities denote the final state

Because θ is conserved for an adiabatic process, the two air masses cannot mix. It is clear 
that EI' will be a minimum (designated by EI'' ) when the masses are rearranged so that the 
air at potential temperature θ1 lies entirely beneath the air at potential temperature θ2.

The available potential energy (APE) can 
now be defined as the difference between 
the total potential energy of a closed system 
and the minimum total potential energy that 
could result from an adiabatic redistribution 
of mass. Thus, for the idealized model given 
earlier, the APE, which is designated by the 
symbol P , is:

This  is equivalent to the maximum kinetic 
energy that can be realized by an adiabatic 
process.



Lorenz (1960) showed that available potential energy is given approximately by the volume 
integral over the entire atmosphere of the variance of potential temperature on isobaric 
surfaces. Thus, letting θ designate the average potential temperature for a given pressure 
surface and θ' the local deviation from the average, the average available potential energy 
per unit volume satisfies the proportionality

Observations indicate that for the atmosphere as a whole

i.e. only small part of PE is converted to KE.



THE LORENZ ENERGY CYCLE (LEC)

It is  useful to examine the exchange of energy between the eddies (e.g. high and low 
pressure systems) and the mean flow (general circulation, here westerlies).

We limit the analysis to quasi-geostrophic flow on a midlatitude β plane.

Eulerian mean equations in log-pressure coordinates can then be written as



In order to analyze the exchange of energy between mean flow and eddies, we require a 
similar set of dynamical equations for the eddy motion. For simplicity we assume that the 
eddies satisfy the following linearized set of equations :

where X' and Y' are the zonally varying components of drag due to unresolved turbulent 
motions.



We now define a global average

where L is the distance around a latitude circle, D is the meridional extent of the 
midlatitude β plane, and A designates the total horizontal area of the β plane. Then for 
any quantity

After some algebra, defining zonal-mean and eddy kinetic and avaliable potential 
energies as



and defining energy transformations

and defining energy sources and sinks



energy equations may be expressed in the following form:

Adding above we obtain an equation for the rate of change of total energy

For adiabatic inviscid flow the right side vanishes and the total energy K + K' + P +P' is 
conserved. In this system the zonal-mean kinetic energy does not include a contribution 
from the mean meridional flow because the zonally averaged meridional momentum 
equation was replaced by the geostrophic approximation.

In the long-term  the production of available potential energy by zonal-mean and eddy 
diabatic processes must balance the mean plus eddy kinetic energy dissipation:



Because solar radiative heating is a maximum in the tropics, where the temperatures
are high, it is clear that R, the generation of zonal-mean potential energy by the zonal-
mean heating, will be positive.
For a dry atmosphere in which eddy diabatic processes are limited to radiation and 
diffusion R , the diabatic production of eddy available potential energy should be 
negative because the thermal radiation emitted to space from the atmosphere 
increases with increasing temperature and thus tends to reduce horizontal 
temperature contrasts in the atmosphere.
For the earth’s atmosphere, however, the presence of clouds and precipitation greatly 
alters the distribution of R . Present estimates ( suggest that in the Northern 
Hemisphere R is positive and nearly half as large as R. Thus, diabatic heating 
generates both zonal-mean and eddy available potential energy.

The observed mean energy 
cycle for the Northern 
Hemisphere. Numbers in 
squares are
energy amounts in units of 
105Jm−2 .
Numbers next to arrows are 
energy transformation
rates in units of W m−2 .
B(p) represents a net energy flux 
into the Southern Hemisphere.
(Adapted from Oort and Peixoto, 

1974.)
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