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The Quasi-Geostrophic Vorticity Equation
The vertical component of vorticity can be approximated geostrophically:
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The above equation can be used to determine (g (x, y) from a known field ®(x, y).
Alternatively, it can be solved by inverting the Laplacian operator to determine from a known
distribution of (g , provided that suitable conditions on ® are specified on the boundaries of
the region in question.

This invertibility is one reason why vorticity is such a useful forecast diagnostic; if the
evolution of the vorticity can be predicted, then inversion of the equation yields the evolution
of the geopotential field, from which it is possible to determine the geostrophic wind and
temperature distributions.

Since the Laplacian of a function tends to be a maximum where the function itself is a
minimum, positive vorticity implies low values of geopotential and vice versa.



The quasi-geostrophic vorticity equation can be obtained from the x and y components of
the quasi-geostrophic momentum equation:
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Taking spatial derivatives and using the fact that the divergence of the geostrophic wind
vanishes, yields the vorticity equation:
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which states that the local rate of change of geostrophic vorticity is given by the sum of
the advection of the absolute vorticity by the geostrophic wind plus the concentration or
dilution of vorticity by stretching or shrinking of fluid columns (the divergence effect).



The vorticity tendency due to vorticity advection may be rewritten as: . = Ve s+ 11+ foe
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The two terms on the right represent the geostrophic advections of relative vorticity and
planetary vorticity, respectively. For disturbances in the westerlies, these two effects
tend to have opposite signs, as illustrated schematically:
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In order to investigate details of vorticity advection consider geopotential in

sinusoidal form: . : i
®(x,y) =g — foUy+ fo Asinkxcosly y = a(p — ¢o)

The parameters ©,, U, and A depend only on pressure, and the wave numbers k
and | are defined as k = 2n/Lx and | = 2n/Ly with Lx , Ly the wavelengths in the x
and y directions, respectively.

The geostrophic wind components are then given by
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and (u;,, u;) is the geostrophic wind due to the synoptic

wave disturbance. Then
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It can be shown that in this simple case the advection of relative vorticity by the
wave component of the geostrophic wind vanishes:
ufga;g/ax + u;az;g/ay —0

and the advection of relative vorticity is:
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Consequently the advection of planetary vorticity can be expressed as P _

—Bvg = —BkAcoskxcosly
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ROSSBY (PLANETARY) WAVES

are of most importance for large-scale meteorological processes in mid latitudes.

In an inviscid barotropic fluid of constant depth, the Rossby wave is an absolute
vorticity-conserving motion due to the variation of the Coriolis parameter with

latitude.

In a baroclinic atmosphere, the Rossby wave is a potential vorticity conserving
motion that owes its existence to the isentropic gradient of potential vorticity.
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Consider a closed chain of barotropic fluid parcels along a meridian. The absolute
vorticity n is given by n=_{+ f. Assume that { = 0 at time t,. Imagine the meridional
displacement of a fluid parcel by 6y from the original latitude at t,. Then

(¢ + f);] — ﬂ’(}
which, recalling p=df/dy gives
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From the above it is evident that if the chain of parcels is subject to a sinusoidal
meridional displacement under absolute vorticity conservation, the resulting perturbation
vorticity will be positive for a southward displacement and negative for a northward
displacement.

This perturbation induces a meridional velocity field advecting the chain of fluid parcels
southward west of the vorticity maximum and northward west of the vorticity minimum.
The fluid parcels oscillate back and forth about equilibrium latitude. The pattern of vorticity
maxima and minima propagates to the west, constituting a Rossby wave.

Let oy =asin [k (x — ct)], where a is the maximum northward displacement. Then
v= D (8y)/ Dt = —kcacos [k (x — ct)]

= HU/HX — k%ca sin [k (x —ct)]

c::—ﬁ/k?' 10



Fig. 7.14 Perturbation vorticity field and induced velocity field (dashed arrows) for a meridionally
displaced chain of fluid parcels. Heavy wavy line shows original perturbation position; light
line shows westward displacement of the pattern due to advection by the induced velocity.
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Free Barotropic Rossby Waves

The dispersion relationship for barotropic Rossby waves may be derived formally by
finding wave-type solutions of the linearized barotropic vorticity equation:

Dh (Z:g + f)
Dt
For a midlatitude 3 plane this equation has the form:
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Assume that the motion consists of a constant basic state zonal velocity plus a small
horizontal perturbation:

u=u+u, v=v, =09 /ox—9u'/dy=1¢

Define perturbation streamfunction:

W' = —9y'/dy, v = oy’ ox

2_:! — vzw;.
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The perturbation form of the vorticity equation is:

k] w’_

We seek a solution of the form:

V' = Re [\If exp(iq@ﬁ}] O = kx+I1y—vt.

and find that
(—v + ki) (—k? - 12) L kB =0

v = uk — Bk/K? K*=k*+1?

Recalling that ¢ = v/k, we find that the zonal phase speed relative to the mean wind is
c—u=—B/K?

The above reduces to ¢ = —f /k* when the mean wind vanishes and / — 0.

The Rossby wave zonal phase propagation is always westward relative to the mean zonal
flow and phase speed depends inversely on the square of the horizontal wavenumber.
Therefore, Rossby waves are dispersive waves whose phase speeds increase rapidly W|th
increasing wavelength.



For a typical midlatitude synoptic-scale disturbance, with similar meridional and zonal
scales (I = k) and zonal wavelength of order 6000 km, the Rossby wave speed relative to
the zonal flow is approximately =8 ms™.

Because the mean zonal wind is generally westerly and greater than 8 ms™, synoptic-scale
Rossby waves usually move eastward, but at a phase speed relative to the ground that is
somewhat less than the mean zonal wind speed.

For longer wavelengths the westward Rossby wave phase speed may be large
enough to balance the eastward advection by the mean zonal wind so that the
resulting disturbance is stationary relative to the surface of the earth.

The free Rossby wave solution becomes stationarv when
K* = B/u = K?

The zonal group velocity for a Rossby wave may be either eastward or westward relative
to the mean flow, depending on the ratio of the zonal and meridional wave numbers (long
waves -> westward, short waves -> eastward).

Stationary Rossby modes (i.e., modes with ¢ = 0 ) have zonal group velocities that are
eastward relative to the ground.

Synoptic-scale Rossby waves also tend to have zonal group velocities that are eastward
relative to the ground. For these waves, advection by the mean zonal wind is generally
larger than the Rossby phase speed so that the phase speed is also eastward relative to
the ground, but is slower than the zonal group velocity.

This implies that new disturbances tend to develop downstream of existing disturbances, 14
which is an important consideration for forecasting.



Forced Topographic Rossby Waves

Forced stationary Rossby modes are of primary importance for understanding the
planetary scale circulation pattern. They may be forced by longitudinally dependent
diabatic heating patterns or by flow over topography, e.g. by flow over the Rockies and
the mountains of central Asia.

As the simplest possible dynamical model of topographic Rossby waves, we use the
barotropic potential vorticity equation for a homogeneous fluid of variable depth:

Dy, (';s_:—l_ f) — 0
Dt h B

We assume that the upper boundary is at a fixed height H , and the lower boundary is at
the variable height %, (x, y) where |, | << H. We also use quasi-geostrophic scaling so
that |, | <<f,. We can then approximate the above by

Dhr
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Which after linearization and use of -plane approximation gives:
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We examine solutions for the special case of a sinusoidal lower boundary:
hr(x,y) =Re [hg exp (.ikx)] cosly

and represent the geostrophic wind and vorticity by the perturbation streamfunction

v(x,y) =Re [1};0 exp (r'f'cx)] cosly

The equation has a steady-state solution with complex amplitude given by:

vo = foho/ | H (K* - K?)]

The streamfunction is either exactly in phase (ridges over the mountains) or exactly out of
phase (troughs over the mountains), with the topography depending on the sign of K*—K .
For long waves (K < Ks ) the topographic vorticity source is balanced primarily by the
meridional advection of planetary vorticity (the g effect).

For short waves (K > Ks ) the source is balanced primarily by the zonal advection of relative
vorticity.

The topographic wave solution has the unrealistic characteristic that when the wave number
exactly equals the critical wave number Ks the amplitude goes to infinity.

This singularity occurs at the zonal wind speed for which the free Rossby mode becomes
stationary. Thus, it may be thought of as a resonant response of the barotropic system.
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Forced Topographic Rossby Waves
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Energy conversion in the atmosphere
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Available Potential Energy

If we let dE, be the internal energy in a vertical section of the column of height dz, then
from the definition of internal energy dE; = pc,Tdz
o0
E;r=c, f pldz
0
The gravitational potential energy is just dEp = pgzd:z

oC 0
Ep:fpgzdz:—fzdp

0 PO

o o0 cvEp = RE]

EpzfdeZprsz o
0 0
and the total potential energy fulfills Ep+ Er=(cp/cy) Er = (cp/R) Ep

I.e. in hydrostatic atmosphere the total potential energy can be obtained E, or E; alone.



Now for an adiabatic process, total energy is conserved: Ex + Ep + E; = constant
If the air masses are initially at rest E, = 0.
Thus, if we let primed quantities denote the final state

+ Er+ E;,=Ep+ Ej

k = (ep/co) (Er = Ej)

Because 0 is conserved for an adiabatic process, the two air masses cannot mix. It is clear
that E;' will be a minimum (designated by E," ) when the masses are rearranged so that the
air at potential temperature 0, lies entirely beneath the air at potential temperature 9,.

The available potential energy (APE) can

1 (hPa)  ow be defined as the difference between
_____________ 250 the total potential energy of a closed system
_____________ 0 and the minimum total potential energy that
A 5 2 could result from an adiabatic redistribution
7 1 of mass. Thus, for the idealized model given
earlier, the APE, which is designated by the
____________________ 500 symbol P,
P = (cp/ey) (Er — E})
__________________________ 750
—— This is equivalent to the maximum kinetic
Tz | 000 energy that can be realized by an adiabatic

process.



Lorenz (1960) showed that available potential energy is given approximately by the volume
integral over the entire atmosphere of the variance of potential temperature on isobaric
surfaces. Thus, letting 6 designate the average potential temperature for a given pressure
surface and 0' the local deviation from the average, the average available potential energy

per unit volume satisfies the proportionality
Poc V! f (@fﬁ/é?) dv

Observations indicate that for the atmosphere as a whole

P/[(cp/cy) Ef] ~5x107°, K/P~ 10"

i.e. only small part of PE is converted to KE.



THE LORENZ ENERGY CYCLE (LEC)

It is useful to examine the exchange of energy between the eddies (e.g. high and low
pressure systems) and the mean flow (general circulation, here westerlies).

We limit the analysis to quasi-geostrophic flow on a midlatitude  plane.

Eulerian mean equations in log-pressure coordinates can then be written as
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In order to analyze the exchange of energy between mean flow and eddies, we require a
similar set of dynamical equations for the eddy motion. For simplicity we assume that the
eddies satisfy the following linearized set of equations :

dy
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where X' and Y' are the zonally varying components of drag due to unresolved turbulent
motions.



We now define a global average w D
() A_lfff()dxdydz
0 0

0

where L is the distance around a latitude circle, D is the meridional extent of the
midlatitude  plane, and A designates the total horizontal area of the 3 plane. Then for
any quantity

(0w /9x) =0
(W /dy) =0, if W vanishesat y = +D
(8‘1’ /az) =0, 1if ¥V vanishesatz=0andz — o0

After some algebra, defining zonal-mean and eddy kinetic and avaliable potential

energies as
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and defining energy transformations
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and defining energy sources and sinks
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energy equations may be expressed in the following form:

dK/dt =|P+K]|+ |K' «K]|+7
dP/dt = —|[Pe«K|+ [P +P]+ R
dK'/dt =P «K'| = [K e K|+ &
dP'Jdt = — [P «K'| = [P e« P|+ R’

Adding above we obtain an equation for the rate of change of total energy

d(K+K' +P+P)/dt=R+R +z+¢

For adiabatic inviscid flow the right side vanishes and the total energy K + K' + P +P' is
conserved. In this system the zonal-mean kinetic energy does not include a contribution
from the mean meridional flow because the zonally averaged meridional momentum
equation was replaced by the geostrophic approximation.

In the long-term the production of available potential energy by zonal-mean and eddy
diabatic processes must balance the mean plus eddy kinetic energy dissipation:

!

R+R =—-%F—¢



Because solar radiative heating is a maximum in the tropics, where the temperatures
are high, it is clear that R, the generation of zonal-mean potential energy by the zonal-
mean heating, will be positive.

For a dry atmosphere in which eddy diabatic processes are limited to radiation and
diffusion R, the diabatic production of eddy available potential energy should be
negative because the thermal radiation emitted to space from the atmosphere
increases with increasing temperature and thus tends to reduce horizontal
temperature contrasts in the atmosphere.

For the earth’s atmosphere, however, the presence of clouds and precipitation greatly
alters the distribution of R . Present estimates ( suggest that in the Northern
Hemisphere R is positive and nearly half as large as R. Thus, diabatic heating
generates both zonal-mean and eddy available potential energy.
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