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Primitive equations

The inviscid momentum equation can be written as:

(notice that here geopotential gradient                      stands for  gravity acceleration)

This equation, together with conservation of mass (continuity equation) and 
conservation of energy (adiabatic, most often in the form:

are, after some approximations  called “primitive equations” .

The typical approximations are:

1)  the hydrostatic approximation:

2) the shallow fluid (shallow water) approximation: r=a+z (a-  radius, z – height above 
sea level), and r is replaced by a everywhere except when differentiated:

0)
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Let's consider momentum equation  in Cartesian coordinates in a plane tangent to the 
surface of the Earth in a given location. 

Here 

 If we  ignore the components of Ω not in the direction of the local vertical, then

Here represents constant Coriolis parameter. The plane is

 tangent to the  Earth's surface at the latitude   This approximation  is called „f-plane”.
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In reality, the magnitude of the vertical component of rotation varies with latitude, which is 
not accounted in f-plane. 
One can approximate latitudinal variations by allowing the effective rotation vector to vary:

then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary
as

The above is known as the beta-plane  approximation. It captures the the most important 
dynamical effects of sphericity, without the complicating geometric effects, which are not 
essential to describe many phenomena: f0 is replaced by f0 +βy to represent a varying 
Coriolis parameter:
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THE BOUSSINESQ APPROXIMATION

The density variations in the ocean and in the atmospheric boundary layer are quite small 
compared to the mean density. In the ocean three effects are important: the compression of 
water by pressure ( p ), the thermal expansion of water if its temperature changes ( T ), and 
the haline contraction if its salinity changes ( S ).  An appropriate equation of state to 
approximately evaluate these effects is the linear one:

In 1978, oceanographers redefined salinity in the Practical Salinity Scale (PSS) as the 
conductivity ratio of a sea water sample to a standard KCl solution. Although PSS is a 
dimensionless quantity, its "unit" is usually called PSU. Salinity of 35  equals 35 grams of salt 
per liter of solution.

Pressure compressibility: 

Thermal expansion: 

Saline contraction:

i.e. In the ocean density fluctuations are small.
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The Boussinesq equations are a set of equations that exploit the smallness of density
Variations. We may write:

and

or Boussinesq approximation. 

Associated with the reference density is a reference pressure in hydrostatic balance with it:

gradient in horizontal.
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The momentum equation can be written (note horizontal gradient operator without z) as:

Accounting for hydrostatic balance of the reference density and pressure we get:

For small differences of density 

Where

and b stays for buoyancy. 
It is common to say that the Boussinesq approximation ignores all variations of density of 
a fluid in the momentum equation, except when associated with the gravitational term.
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Typically for most large-scale motions  the deviation pressure and density fields are also 
approximately in hydrostatic balance,which results in:

A condition for the above to hold is that vertical accelerations are small compared to
gδρ /ρ0 , and not compared to the acceleration due to gravity itself. 

Mass conservation: 

When the total derivative in the above and advection scale in the same way then  the above 
can be approximated as:

Note that the evolution of density (leftmost term)  does NOT follow from the above 
momentum equations!!! 
It is given by the thermodynamic equation in conjunction with an equation of state, and this 
should not be confused with the mass conservation equation. 
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Thermodynamic equation 
Neglecting salinity a useful starting point is to write the thermodynamic equation as:

Then, from Boussinesq approximations for density and pressure one may write:

The above, keeping in mind that can be approximated as:

The above set of equations (momentum, mass continuity equation and thermodynamic 
equation) form a closed set, called the simple Boussinesq equations.



11

The Boussinesq equations (in a slightly more general form, using equation of state – look 
into Valis book),  with the hydrostatic and traditional approximations are often considered to 
be the oceanic primitive,equations:
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 Energetics of the Boussinesq system

In a uniform gravitational field, with no other forcing or dissipation, the  Boussinesq 
equations are:

 Taking dot product of the momentum equation with v we obtain an equation for the 
evolution of kinetic energy density:

Taking and differentiating one gets:

The above, together with results in the equation for the evolution of potential 
energy:
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Adding potential and kinetic energies  and expanding the material derivative  one obtains an 
energy equation for the Boussinesq system:

The energy density (divided by ρ0 ) is just .
Integral of the second term multiplied by ρ0 is the potential energy of the flow minus that of 
the basic state.  
If there were a heating term on the right-hand side of  
this would directly provide a source of 
potential energy, rather than internal energy as in the compressible system. 

Because the fluid is incompressible, there is no conversion from kinetic and potential energy 
into internal energy.
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which gives:
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Example of gravity waves in the 
atmosphere visualized by 
condensation in the wave crest.
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From: http://www.student.math.uwaterloo.ca/~amat361/Fluid%20Mechanics/topics/internal_waves.htm

for future...
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Standard
atmosphere
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 EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXIMATION

In the atmosphere the density varies significantly, mainly in the vertical. Deviations of both 
density and pressure from a statically balanced state are often small, the relative vertical 
variation of potential temperature is also small. This allows to formulate simplified set of 
equations, useful for theoretical and numerical analysis because sound waves are 
eliminated by way of an ‘anelastic’ approximation. To begin we set:

Importantly, the density basic state is now a (given) function of vertical coordinate. As with 
the Boussinesq, the idea is to ignore dynamic variations of density except where associated 
with gravity.

Remember that, air can be considered an ideal gas fulfilling:
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When:

Then

In the atmosphere, the left-hand side is, typically, much smaller than either of the two terms 
on the right-hand side.

 The (horizontal) momentum equation

Neglecting density fluctuations we get:

Where

The above  is similar to the corresponding equation in the Boussinesq approximation.
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Consider vertical component of the momentum equation (using decomposition of pressure 
and density into reference and fluctuating parts):

 Neglecting δρ on the left-hand-side we obtain:

Now we have to eliminate δρ in favor of δs:

(i) The gravitational term now involves δs rather than δρ which enables a more direct 
connection with the thermodynamic equation.
(ii) The potential temperature scale height (100 km) in the atmosphere is much larger 
than the density scale height ( 10 km), and so the last term in the above  is small.
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When we choose the  reference state to be one of constant potential temperature the term 
  vanishes and the vertical momentum equation becomes:

We have now the same form as the Boussinesq momentum equations, but with different 
definitions of  geopotential (above) and buoyancy:

Mass conservation:

We neglect δρ in the divergence term. Further, the local time derivative will be small if time 
itself is scaled advectively (i.e., T/L=U and sound waves do not dominate). This allows to 
replace temporal derivative of density fluctuations into rate of change of the reference 
density in vertical motions, giving:
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It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibility of 
the fluid is neglected, and this serves to eliminate sound waves. For reference, in spherical 
coordinates the mass conservation equation is:

Thermodynamic equation:

Can be approximated as:

And the whole anelastic approximation for
Adiabatic, non viscous flow is:
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Journal of the Atmospheric Sciences
Volume 19, Issue 2 (March 1962) pp. 173-179
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 Energetics of the anelastic equations

Kinetic energy equation, obtained in the same manner as in Boussinesq case is:

Define geopotential Φ(z) such that ▼Φ=-k :

Taking into account 

one gets equation for the rate of change of potential energy:

Combining it with the kinetic energy equation results in:
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After expanding the material derivative and rearrangement

This can be written as:

Where E is the total energy of the flow. Energy, when integrated over the closed domain 
(whatever it means) is conserved. Term is analogous to the potential energy of a 
Boussinesq system, but  exactly equal to that because ba is the bouyancy based on 
potential temperature, not density. The term combines contributions from both the 
internal energy and the potential energy.
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Scale Analysis of Deep and Shallow Convection in the Atmosphere!

YosHMITSU OGURA AND NORMAN A. PHILLIPS

Massachusetts Institute of Technology
(Manuscript received 18 October 1961, in revised form 27 November 1961)

ABSTRACT

The approximate equations of motion derived by Batchelor in 1953 are derived by a formal scale analysis,
with the assumption that the percentage range in potential temperature is small and that the time scale is
set by the Brunt-Viisild frequency. Acoustic waves are then absent. If the vertical scale is small compared
to the depth of an adiabatic atmosphere, the system reduces to the (non-viscous) Boussinesq equations. The
computation of the saturation vapor pressure for deep convection is complicated by the important effect of

the dynamic pressure on the temperature. For shallow convection this effect is not important, and a simple
set of reversible equations is derived.
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Figure 2.3 The spherical co-
ordinate system. The orthogo-
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Figure 2.7 Scaled frequency, ' )
w/N, plotted as a function of
scaled horizontal wavenumber,
k/m, using the full dispersion
relation of (2245) (solid line,
asymptoting to unit value for
large k /m) and with the hydr:
static dispersion relation
(dashed line, tending to oo for
large k /m).
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The frequency (see Fig.[2-7) is thus always less than N, approaching N for small hor-
izontal scales, k >> m. If we explicitly neglect pressure perturbations, as in the parcel
argument, then the two equations,

du’ o,
— =, ——+w'N
at

(2.246)

form a closed set, and give w? = N2,
1f the basic state density increases with height then N2 < 0 and we expect this
to be unstable. Indeed, 2.245' then gives
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o= [y (2.247)
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2.10.1 Gravity waves and convection in a Boussinesq fluid

Let us consider a Boussineq fluid, at rest, in which the buoyancy varies linearly with
height and the bouyancy frequency, N, is a constant. Linearizing the equations of
motion about this basic state we obtain

du’

(2.2432)
(2.243b)
o
o (2243¢)
o
ot
% +uw'N? =0, (2.243d)

where for simplicity we assume that the flow is a function only of x and z. A little
algebra gives a single equation for w’,

92 92 92 , 007,
wtaa) e TN g =0 (2.244)

Seeking solutions of the form w’ = Re W exp[i (kx + mz — wt)] (where Re denotes
the real part) yields the important dispersion relationship for gravity waves:
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Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

Dv
Momentum equations: D + f xv=-V¢ + bk (B.1)
Mass conservation: V=0 (B.2)
B i Db (B.3)
uoyancy equation: == .
YAneyseq D1
A more general form replaces the buoyancy equation by:
Do ;
Thermodynamic equation: o= (B.4)
. . DS o
Salinity equation: =8 (B.5)

Dr
Equation of state: b=5b(0.5,z) (B.6)
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Primitive equations



The inviscid momentum equation can be written as:









(notice that here geopotential gradient  stands for  gravity acceleration)



This equation, together with conservation of mass (continuity equation) and conservation of energy (adiabatic, most often in the form:









are, after some approximations  called “primitive equations” .



The typical approximations are:



1)  the hydrostatic approximation:







2) the shallow fluid (shallow water) approximation: r=a+z (a-  radius, z – height above sea level), and r is replaced by a everywhere except when differentiated:
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Let's consider momentum equation  in Cartesian coordinates in a plane tangent to the surface of the Earth in a given location. 



















Here 



 If we  ignore the components of Ω not in the direction of the local vertical, then























Here 							represents constant Coriolis parameter. The plane is



 tangent to the  Earth's surface at the latitude 	  This approximation  is called „f-plane”.





















In reality, the magnitude of the vertical component of rotation varies with latitude, which is not accounted in f-plane. 

One can approximate latitudinal variations by allowing the effective rotation vector to vary:







then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary

as









The above is known as the beta-plane  approximation. It captures the the most important dynamical effects of sphericity, without the complicating geometric effects, which are not essential to describe many phenomena: f0 is replaced by f0 +βy to represent a varying Coriolis parameter:

















THE BOUSSINESQ APPROXIMATION





The density variations in the ocean and in the atmospheric boundary layer are quite small compared to the mean density. In the ocean three effects are important: the compression of water by pressure ( p ), the thermal expansion of water if its temperature changes ( T ), and the haline contraction if its salinity changes ( S ).  An appropriate equation of state to approximately evaluate these effects is the linear one:









In 1978, oceanographers redefined salinity in the Practical Salinity Scale (PSS) as the conductivity ratio of a sea water sample to a standard KCl solution. Although PSS is a dimensionless quantity, its "unit" is usually called PSU. Salinity of 35  equals 35 grams of salt per liter of solution.



Pressure compressibility: 



Thermal expansion: 



Saline contraction:



i.e. In the ocean density fluctuations are small.

















The Boussinesq equations are a set of equations that exploit the smallness of density

Variations. We may write:













and







or Boussinesq approximation. 



Associated with the reference density is a reference pressure in hydrostatic balance with it:













gradient in horizontal.











The momentum equation can be written (note horizontal gradient operator without z) as:











Accounting for hydrostatic balance of the reference density and pressure we get:













For small differences of density 











Where







and b stays for buoyancy. 

It is common to say that the Boussinesq approximation ignores all variations of density of a fluid in the momentum equation, except when associated with the gravitational term.





















Typically for most large-scale motions  the deviation pressure and density fields are also approximately in hydrostatic balance,which results in:













A condition for the above to hold is that vertical accelerations are small compared to

gδρ /ρ0 , and not compared to the acceleration due to gravity itself. 





Mass conservation: 







When the total derivative in the above and advection scale in the same way then  the above can be approximated as:









Note that the evolution of density (leftmost term)  does NOT follow from the above momentum equations!!! 

It is given by the thermodynamic equation in conjunction with an equation of state, and this should not be confused with the mass conservation equation. 

















Thermodynamic equation 

Neglecting salinity a useful starting point is to write the thermodynamic equation as:

















Then, from Boussinesq approximations for density and pressure one may write:



















The above, keeping in mind that 					can be approximated as:









The above set of equations (momentum, mass continuity equation and thermodynamic equation) form a closed set, called the simple Boussinesq equations.



















The Boussinesq equations (in a slightly more general form, using equation of state – look into Valis book),  with the hydrostatic and traditional approximations are often considered to be the oceanic primitive,equations:









 Energetics of the Boussinesq system



In a uniform gravitational field, with no other forcing or dissipation, the  Boussinesq equations are:













 Taking dot product of the momentum equation with v we obtain an equation for the evolution of kinetic energy density:











Taking 							and differentiating one gets:











The above, together with				results in the equation for the evolution of potential energy:



















Adding potential and kinetic energies  and expanding the material derivative  one obtains an energy equation for the Boussinesq system:













The energy density (divided by ρ0 ) is just 				.

Integral of the second term multiplied by ρ0 is the potential energy of the ﬂow minus that of the basic state.  

If there were a heating term on the right-hand side of 		 

this would directly provide a source of 

potential energy, rather than internal energy as in the compressible system. 



Because the ﬂuid is incompressible, there is no conversion from kinetic and potential energy into internal energy.

















which gives:





















Example of gravity waves in the atmosphere visualized by condensation in the wave crest.







From: http://www.student.math.uwaterloo.ca/~amat361/Fluid%20Mechanics/topics/internal_waves.htm



for future...
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 EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXIMATION





In the atmosphere the density varies significantly, mainly in the vertical. Deviations of both density and pressure from a statically balanced state are often small, the relative vertical variation of potential temperature is also small. This allows to formulate simplified set of equations, useful for theoretical and numerical analysis because sound waves are eliminated by way of an ‘anelastic’ approximation. To begin we set:

















Importantly, the density basic state is now a (given) function of vertical coordinate. As with the Boussinesq, the idea is to ignore dynamic variations of density except where associated with gravity.



Remember that, air can be considered an ideal gas fulfilling:

























When:





Then







In the atmosphere, the left-hand side is, typically, much smaller than either of the two terms on the right-hand side.





 The (horizontal) momentum equation











Neglecting density fluctuations we get:







Where





The above  is similar to the corresponding equation in the Boussinesq approximation.















Consider vertical component of the momentum equation (using decomposition of pressure and density into reference and fluctuating parts):











 Neglecting δρ on the left-hand-side we obtain:











Now we have to eliminate δρ in favor of δs:

















(i) The gravitational term now involves δs rather than δρ which enables a more direct connection with the thermodynamic equation.

(ii) The potential temperature scale height (100 km) in the atmosphere is much larger 

than the density scale height ( 10 km), and so the last term in the above  is small.













When we choose the  reference state to be one of constant potential temperature the term 	 	 vanishes and the vertical momentum equation becomes:















We have now the same form as the Boussinesq momentum equations, but with different definitions of  geopotential (above) and buoyancy:











Mass conservation:







We neglect δρ in the divergence term. Further, the local time derivative will be small if time itself is scaled advectively (i.e., T/L=U and sound waves do not dominate). This allows to replace temporal derivative of density fluctuations into rate of change of the reference density in vertical motions, giving:



























It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibility of the fluid is neglected, and this serves to eliminate sound waves. For reference, in spherical coordinates the mass conservation equation is:









Thermodynamic equation:







Can be approximated as:









And the whole anelastic approximation for

Adiabatic, non viscous flow is:
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 Energetics of the anelastic equations



Kinetic energy equation, obtained in the same manner as in Boussinesq case is:









Deﬁne geopotential Φ(z) such that ▼Φ=-k :









Taking into account 







one gets equation for the rate of change of potential energy:











Combining it with the kinetic energy equation results in:

















After expanding the material derivative and rearrangement











This can be written as:













Where E is the total energy of the flow. Energy, when integrated over the closed domain (whatever it means) is conserved. Term			is analogous to the potential energy of a Boussinesq system, but  exactly equal to that because ba is the bouyancy based on potential temperature, not density. The term combines contributions from both the internal energy and the potential energy.















