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TKE production

TKE dissipationTKE changes

In stationary turbulence production is balanced by dissipation
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Kołmogorov (1941) therory of uniform isotropic and stationary turbulence 
- after Frisch(1990):

(..............)

velocity differences on a distance  l
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3rd order structure function

universal exponent
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Notice that for  p=2 this is the 2nd order structure function, dimension velocity squared 
e.g. equivalent to turbulent kinetic energy per unit mass!!!,  

Thus, 2nd order structure fuction can be interpreted in terms of energy, and the whole 
eq. (6)  as relation (dependency) of TKE on scale l, on condition that the scale is 
substantially smaller than the integral scale l

0
.

In the other words: TKE in scale  l is proportional to this scale in power 2/3.
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Goettingen turbulence facility:
 GTF3 generates high Reynolds 
number turbulent water flows 
between two counter-rotating baffled 
disks. Large glass windows provide 
access for LPT or PIV 
measurements.

Oshima Lab, Tokyo:
Generation of nearly isotropic 
homogeneous turbulence using 
rotating grids
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The probability density functions, of differences of velocity fluctuations, obtained in atmospheric 
turbulence about 30 m above the ground. The ordinate is logarithmic in the main figure and 
linear in the inset. Each curve is for a different separation distance (using Taylor’s hypothesis).  
The smallest separation distance (about 2.5 mm) is only five times the Kolmogorov scale,  
while the largest (about 50 m) is comparable to the height of the measurement point. For small 
separation distances, very large excursions (even as large as 25 standard deviations) occur 
with nontrivial frequency; they are far more frequent than is given by a Gaussian distribution
(shown by the full line), which is approached only for large separation distances. Extended tails 
over a wide range of scales is related to the phenomenon of small-scale intermittency (that
is, uneven distribution in space of the small scales).  (Sreeinivasan, 1999)

Remark:

Differences of 
velocity 
fluctuations on 
short distances 
are closely 
related to  
velocity
derivatives!
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Planar cuts of the three-dimensional fields of energy dissipation in a box of homogeneous and 
isotropic turbulence. The data are obtained by solving the Navier-Stokes equations on a 
computer. Not uncommon are amplitudes much larger than the mean; these large events 
become stronger with increasing Reynolds number. 

Remark: 2nd order 
structure function 
on short distances 
says on the square 
of derivative!
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 The scaling exponents for the velocity increments  with the separation distance in the inertial 
range. The unfilled squares are determined for shearless turbulence by the ESS method,
using |Δu

r
 |3 as the reference structure function  The crosses are for a boundary layer. 

The full line is K 41.
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Alternative approach: Fourier decomposittion (no Frisch anymore).

Notice that  in 4.7 there are velocities in points  x and x+r, which is similar to the 2nd order structure function. In 
this equation, al well as in  4.5  there is velocity in second power!!!!i.



11



12

Balance of energy in phase space.
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Scales and the Energy Spectrum

The largest length scales in a turbulent flow are set by the dimensions of the flow field or 
the size of the body generating the flow disturbance. If the characteristic dimension and 
velocity are L and U respectively, a mean flow advection time scale is L/U. The 
characteristic time for viscous diffusion across a length L is L2/ν and the ratio of these 
times is the Reynolds number, Re

L
 = UL/ν. The smallest scales, η and η2/ν, are set by 

the dissipation rate of turbulent energy. 

Distribution of turbulent energy in wave number space. 
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Chuang et al., 2008
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Kolmogorov scale and other characteristic scales of turbulence

Komogorov scale is often denoted as η
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Taylor microscale.

Taylor microscale Reynolds number
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Relationship of the correlation function g(r) to the integral and microscales Λ, λ.

g (r )=
u(x)u( x+r )

u( x)u(x)

Taylor microscale interpretation:
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Muschinski et al., 2001
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