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T at 850 hPa                            and                 wind speed at 200 hPa
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Synoptic-Scale Motions: Quasi-Geostrophic Analysis

Meridional cross section of longitudinally and time-averaged zonal wind (solid contours,
interval of ms−1 ) and temperature (dashed contours, interval of 5 K) for December–February.
Easterly winds are shaded and 0˚ C isotherm is darkened. Wind maxima shown in ms−1 , 
temperature minima shown in ˚C. (NCEP/NCAR reanalyses; after Wallace, 2003.)
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Synoptic-Scale Motions: Quasi-Geostrophic Analysis

Meridional cross section of longitudinally and time-averaged zonal wind (solid contours,
interval of ms−1 ) and temperature (dashed contours, interval of 5 K) for June-August.
Easterly winds are shaded and 0˚ C isotherm is darkened. Wind maxima shown in ms−1 , 

temperature minima shown in ˚C. (NCEP/NCAR reanalyses; after Wallace, 2003.)
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Mean zonal wind at the 200-hPa level for December–February averaged for years 1958–

1997. Contour interval 10 ms−1 (heavy contour, 20 ms−1 ).
(Based on NCEP/NCAR reanalyses; after Wallace, 2003.)

Notice 
significant  
deviations from 
zonal 
symmetry!
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In addition to its longitudinal dependence, the planetary scale flow also varies from day to 
day due to its interactions with transient synoptic-scale disturbances.
In fact, observations show that the transient planetary scale flow amplitude is comparable to 
that of the time-mean. As a result, monthly mean charts tend to smooth out the actual 
structure of the instantaneous jet-stream since the position and intensity of the jet vary. 
Thus, at any time the planetary scale flow in the region of the jet-stream has much greater 
baroclinicity than indicated on time-averaged charts.
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Latitude–height cross sections through a cold front at 
80W longitude on 00 UTC January 14, 1999.
(a) Potential temperature contours (thin solid lines, K) 
and zonal wind isotachs (dashed lines, ms−1).
(b) Thin solid contours as in (a), heavy contours show 
Ertel potential vorticity labeled in PVU
(1PVU = 10−6 K kg−1 m2 s−1 ).

The axis of the jet-stream tends to be 
located above a narrow sloping zone of 
strong potential temperature gradients called 
the polar-frontal zone. The occurrence of 
an intense jet core above this zone of large
magnitude potential temperature gradients 
is a consequence of the thermal wind balance.

The potential temperature contours illustrate 
the fact that isentropes (constant θ surfaces)
cross the tropopause in the vicinity of the jet 
so that air can move between the 
troposphere and the stratosphere without 
diabatic heating or cooling.
The strong gradient of Ertel potential vorticity 
at the tropopause, however, provides a strong
resistance to cross-tropopause flow along the 
isentropes.
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It is a common observation in fluid dynamics that jets in which strong velocity shears occur 
may be unstable with respect to small perturbations. By this is meant that any small 
disturbance introduced into the jet will tend to amplify, drawing energy from the jet as it grows. 
Most synoptic-scale systems in midlatitudes appear to develop as the result of an instability of 
the jet-stream flow. This instability, called baroclinic instability, depends on the meridional 
temperature gradient, particularly at the surface. Hence, through the thermal wind relationship, 
baroclinic instability depends on vertical shear and tends to occur in the region of the polar 
frontal zone.
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Schematic 500-hPa contours (heavy solid lines), 1000-hPa contours (thin lines), and 1000–
500 hPa thickness (dashed) for a developing baroclinic wave at three stages of 
development. (After Palmer and Newton, 1969.)

In the stage of rapid development of cyclone there is a cooperative interaction between the 
upper level and surface flows; strong cold advection is seen to occur west of the trough
at the surface, with weaker warm advection to the east.
This pattern of thermal advection is a direct consequence of the fact that the trough at 500 
hPa lags (lies to the west of ) the surface trough so that the mean geostrophic wind in the 
1000- to 500-hPa layer is directed across the 1000- to 500-hPa thickness lines toward
larger thickness west of the surface trough and toward smaller thickness east of
the surface trough.
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West–east cross section through a developing baroclinic wave. Solid lines are trough and
ridge axes; dashed lines are axes of temperature extrema; the chain of open circles denotes the t



11

Baroclinic disturbances around the world..
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THE QUASI-GEOSTROPHIC APPROXIMATION
Scale Analysis in Isobaric Coordinates

The dynamical equations in isobaric coordinates are presented here. The horizontal momentum 
equation, the hydrostatic equation, the continuity equation, and the thermodynamic energy 
equation may be expressed as:

with the total derivative in the 
momentum equation defined by

where ω ≡ Dp/Dt is the pressure change following 
the motion, Sp ≡ −T (∂ ln θ / ∂p) is the static stability 
parameter [Sp ≈ 5 × 10−4 K Pa−1 in the midtroposphere], J is heating rate.
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Let's separate the horizontal velocity into geostrophic and ageostrophic parts by letting
where the geostrophic wind is 

defined as

and the ageostrophic wind, Va , is just the difference between the total horizontal wind and 
the geostrophic wind. We have here assumed that the meridional length scale, L, is small 
compared to the radius of the earth so that the geostrophic wind may be defined using a 
constant reference latitude value of the Coriolis parameter.

For the systems of interest more precisely,

The ratio of the magnitudes of the ageostrophic and geostrophic winds is the same order 
of magnitude as the Rossby number.

The momentum can then be approximated to O(Ro) by its geostrophic value, and the rate 
of change of momentum or temperature following the horizontal motion can be 
approximated to the same order by the rate of change following the geostrophic wind. 
Thus, V can be replaced by Vg and the vertical advection, which arises only from the 
ageostrophic flow, can be neglected.
The rate of change of momentum following the total motion is then approximately equal to 
the rate of change of the geostrophic momentum following the geostrophic wind:
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Let's use beta-plane approximation:

For synoptic-scale motions, the ratio of the first two terms in the expansion of f has an 
order of magnitude:

The acceleration following the motion is equal to the difference between the Coriolis force 
and the pressure gradient force. This difference depends on the departure of the actual 
wind from the geostrophic wind. Thus, it is not permissible to simply replace the horizontal 
velocity by its geostrophic value. We write:

The approximate horizontal momentum equation thus has the form:

In the above each term  is  O(Ro) compared to the pressure gradient force, whereas terms 
neglected are O(Ro2) or smaller.
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The geostrophic wind  is nondivergent:

which gives the continuity equation in the form:

Indicating that ω is determined only by the ageostrophic part of the wind field.

In the thermodynamic energy equation  the horizontal advection can be approximated 
by its geostrophic value. However, the vertical advection is not neglected, but forms part 
of the adiabatic heating and cooling term, despite the smallness of the vertical velocity.
The adiabatic heating and cooling term can be  simplified by dividing the total 
temperature field, into a basic state (standard atmosphere)  plus a deviation from the 
basic state:,

Because only the basic state portion of 
the temperature field need be included in the static stability term, and the quasi-
geostrophic thermodynamic energy equation may be expressed in the form:
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The alternative form of the thermodynamic energy equation
can be expressed in terms of the geopotential field:

This is the last equation  from the set of quasi-geostrophic equations, the others (from the 
previous slides) are:

These form a complete set in the dependent variables, Vg , Va , and ω (provided that the 
diabatic heating rate is known). This form of the equations is not, however, suitable as a 
prediction system. It is useful to replace momentum equation  by an equation for the 
evolution of the vorticity of the geostrophic wind, in which case only the divergent part of the 
ageostrophic wind plays a role in the dynamics.
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The Quasi-Geostrophic Vorticity Equation

The vertical component of vorticity can be approximated geostrophically:

The above equation  can be used to determine ζg (x, y) from a known field  Φ(x, y).
Alternatively, it can be solved by inverting the Laplacian operator to determine from a known 
distribution of ζg , provided that suitable conditions on Φ are specified on the boundaries of 
the region in question.

This invertibility is one reason why vorticity is such a useful forecast diagnostic; if the 
evolution of the vorticity can be predicted, then inversion of the equation yields the evolution 
of the geopotential field, from which it is possible to determine the geostrophic wind and 
temperature distributions.

Since the Laplacian of a function tends to be a maximum where the function itself is a 
minimum, positive vorticity implies low values of geopotential and vice versa.
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The quasi-geostrophic vorticity equation can be obtained from the x and y components of 
the quasi-geostrophic momentum equation:

Taking spatial derivatives and using the fact that the divergence of the geostrophic wind  
vanishes,  yields the vorticity equation:

which states that the local rate of change of geostrophic vorticity is given by the sum of 
the advection of the absolute vorticity by the geostrophic wind plus the concentration or 
dilution of vorticity by stretching or shrinking of fluid columns (the divergence effect).
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The vorticity tendency due to vorticity advection  may be rewritten as:

The two terms on the right represent the geostrophic advections of relative vorticity and 
planetary vorticity, respectively. For disturbances in the westerlies, these two effects 
tend to have opposite signs, as illustrated schematically:
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In order to investigate details of vorticity advection consider  geopotential in 
sinusoidal form:

The parameters Φ0 , U , and A depend only on pressure, and the wave numbers k 
and l are defined as k = 2π/Lx and l = 2π/Ly with Lx , Ly the wavelengths in the x 
and y directions, respectively.
The geostrophic wind components are then given by

and is the geostrophic wind due to the synoptic 
wave disturbance. Then

It can be shown that in this simple case the advection of relative vorticity by the 
wave component of the geostrophic wind vanishes:

and the advection of relative vorticity is:
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Consequently the advection of planetary vorticity can be expressed as



22


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

