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Abstract This abstract is 200 words long. If a passive scalar field such as dye or
temperature is placed in a smooth planar vortex, for example a Gaussian monopole,
the scalar becomes wound up into a spiral structure because of differential rotation.
An analogous process occurs if weak non-axisymmetric vorticity is introduced, for
example by perturbing the vortex using an external irrotational flow. Although the
wind-up of vorticity and scalar look very similar, there are a number of differences
because the vorticity is coupled back to the flow field, and this is important close to
the centre of the vortex. We show that this leads to rapid suppression of vorticity and
some surprising power laws. We also discuss the way in which differential rotation
enhances dissipation of scalar and vorticity, and the relevant time-scales, especially
close to the centre of the vortex.

If a passive scalar field such as dye or temperature is placed in a smooth planar
vortex, for example a Gaussian monopole, the scalar becomes wound up into a spiral
structure because of differential rotation. An analogous process occurs if weak non-
axisymmetric vorticity is introduced, for example by perturbing the vortex using an
external irrotational flow.

Here’s a blob that’s subjected to swirl;
It’s a problem for somebody virile!

But right at the core
Where it turns more and more,

That’s where I get in a whirl.

1. Introduction
The interaction of fluid motion and molecular diffusion can accelerate

the destruction of advected quantities, such as passive scalars, magnetic
fields and vorticity itself. One particularly important example is when
the flow is in the plane and possesses a region of closed stream lines,
for example a smooth flow having circular stream lines. In this case
differential rotation in the flow tends to reduce radial scales, and to
enhance diffusion in the radial direction, which now occurs on a new
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time-scale intermediate between the turn-over time-scale t and the long
time-scale of molecular diffusion T . This new accelerated diffusion time-
scale is of order T 1/3t2/3.

(a) (b)

Figure 1. Streamline patterns for different kinds of motion of the wall: (a) trans-
lating wall; (b) rotating wall.

Let us introduce the usual dimensionless numbers for the ratio T/t,
namely, a Péclet number Pe for a passive scalar, a Reynolds number Re
for vorticity and a magnetic Reynolds number Rm for magnetic fields.
Taking the turn-over time t to be unity without loss of generality, the
time-scales for accelerated diffusion become

Pe1/3, Re1/3, Rm1/3, (1)

respectively.

Table 1. Small Table

one two three

C D E

These rapid time-scales were explained analytically in a clutch of pa-
pers in the early eighties (Lundgren 1982, Moffatt & Kamkar 1983,
Rhines & Young 1983). They were first observed numerically rather
earlier by Weiss (1966), who considered magnetic field evolution in the
kinematic approximation at high Rm. In this case the vector potential
for the magnetic field is advected as a passive scalar and the destruction
of this scalar on the Rm1/3 time-scale leads to the process of flux ex-
pulsion of the magnetic field. Bernoff & Lingevitch (1994) observed the
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analogous Re1/3 time-scale for vorticity in numerical simulations of the
relaxation of perturbations to a Gaussian vortex. They also gave the
term ‘shear–diffuse mechanism’ to this accelerated diffusion process.

(a)

Figure 2a. Streamline patterns for
translating wall.

(b)

Figure 2b. Streamline patterns for
rotating wall.

The rapid time-scales arise from the interaction of diffusion and differ-
ential rotation, and so the magnitude of the differential rotation enters
into estimates of the time-scale. If α(r) is the angular velocity of fluid
elements around the circular stream lines, then a stricter estimate of the
time-scale for the destruction of scalar by the shear–diffuse mechanism
at a given radius r is

α′(r)−2/3 Pe1/3, (2)

(and analogously for magnetic field or vorticity). This dependence on
the magnitude of the differential rotation has been considered by Flohr
& Vassilicos (1997) who note that if α′(r) has a wide variation with r
then the above estimate gives a wide range of time-scales and introduces
new scaling laws for diffusion. An example of this would be when the
flow field is a point vortex, for which α′(r) diverges as r tends to zero
(Bajer 1998).

As noted by many authors the shear–diffuse mechanism requires α′(r)
to be non-zero, and correspondingly the time-scale above in () diverges
if α′(r) = 0 at a given radius. In this case the interaction of shear
and diffusion is less potent, and longer time-scales are introduced. For
example Parker (1966) studies flux expulsion in an extreme case in which
the flow field is solid body rotation within a cylinder, the fluid outside
being at rest; the time-scale of diffusion becomes of order Rm.
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Table 2. Effects of the Two Types of Scaling Proposed by Dennard and
Co-Workers.a,b

Parameter κ Scaling κ, λ Scaling

Dimension κ−1 λ−1

Voltage κ−1 κ−1

Currant κ−1 λ/κ2

Dopant Concentration κ λ2/κ

aRefs. 19 and 20.
bκ, λ > 1.

Now in this paper we consider only smooth flow fields, and these have
the property that α′(r) is necessarily zero at the origin r = 0. In fact in
any region of closed stream lines of a smooth flow the shear–diffuse time-
scale () is non-uniform at the origin, and diffusion of a scalar, magnetic
field or vorticity must occur on a longer time-scale. The aim of the
present paper is to obtain this new, longer time-scale and to determine
the ultimate fate of a passive scalar, magnetic field or vorticity near the
origin, for this case of smooth fluid flow.
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