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A mixed Euler-Lagrangian description of vortex line transport by a force-free
non-viscous fluid flow was recently proposed by Kuznetsov & Ruban [1]. The motion
of Lagrangian markers R(a, t) satisfies

∂R

∂t
= v(R, t)− Ω(R, t) · v(R, t)

|Ω(R, t)|2
Ω(R, t). (1)

Here a is the initial position of a marker: R(a, 0) = a, t is time, v is the flow
velocity, and

Ω(R, t) ≡ curlRv(R, t) (2)

is vorticity. Equations (1) and (2) are closed by the relation

Ω(R(a, t), t) =

(
det ‖ ∂R

∂a
‖
)−1

(Ω0 · ∇a)R(a, t), (3)

where Ω(a, 0) = Ω0(a) is the initial vorticity.
We have developed a code for numerical solution of the system (1)-(3). 2π-perio-

dicity in space is assumed, so that Fast Fourier Transforms can be used for the
inversion of curl in (2). A second-order Adams-Bashforth finite-difference scheme is
used for numeric integration of (1). To test the code, we have checked that an ABC
flow, which is a steady solution to the force-free Euler equation, in computations
remains unaltered. We have also verified that the numerical error in conservation
of the total kinetic energy of the flow is O(h2) (here h is the size of the a-mesh,
where Ω0 is set); this is consistent with the order of methods applied for spatial
discretization of the problem (2) and with finite-difference schemes used to evaluate
gradients in (3).
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Computations have been performed with a uniform mesh of 1283 points. Col-
lapse is found to develop in a flow, which is initially chosen to have random Fourier
harmonics and an exponentially decaying energy spectrum. The flow does not pos-
sess any symmetry. According to the theory of Kuznetsov & Ruban [2], in the
region of collapse vorticity behaves as (t0− t)−1, which is indeed found in computa-
tions (see Fig.1). Their another prediction is confirmed: eigenvalues of the Hessian
‖ ∂2

∂ai∂aj
|Ω|−1 ‖ at the point of singularity are non-singular and slightly depend on

time.

Figure 1: |Ω|−1 (vertical axis) as a function of time (horizontal axis).
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