Dynamical behaviors of countercurrent axisymmetric shear flows

<u>Xi-Lin Xie¹</u>

W. W. Mar^2

H. L. $Zhou^1$

¹Fudan University, Dept. Mechanics & Engineering Science ²Donghua University, College of Basic Science xiexilin@online.sh.cn

The dynamical behaviors of the coherent structures in the countercurrent axisymmetric shear flows have been experimentally studied. Axisymmetric vortices play an important role in the case of the forward velocity U_1 ranging from 3 to 20 m/s. A critical forward velocity $U_1^{cr} = 6.8 \ m/s$ was defined and subsequently the subcritical regime: $U_1 > U_1^{cr}$ and the supercritical regime: $U_1 < U_1^{cr}$. In the subcritical regime the flow system could happen to shear layer self-excited oscillation in a certain range of the velocity ratio. In the supercritical regime, the spatial evolution of the coherent structures undergoes following stages: K-H instability causing vortices rolling-up \rightarrow first time vortices conglomeration \rightarrow jet column self-excited oscillation \rightarrow shear layer self-excited oscillation \rightarrow 'ordered tearing' \rightarrow turbulence in the case of U_1 is less than 4 m/s. The 'ordered tearing' does not exist when U_1 is greater than or equal to 4 m/s. Correspondingly, the spatial evolution of the time asymptotic behaviors of the dynamics system could be described as follows: Hopf bifurcation \rightarrow subharmonic bifurcation \rightarrow inverse superharmonic bifurcation \rightarrow superharmonic bifurcation \rightarrow chaos ('weak turbulence') in the case of U_1 is less than 4 m/s. Superharmonic bifurcation does not exist when U_1 is greater or equal to 4 m/s. The terms: superharmonic and inverse superharmonic bifurcations newly put forward are characteristic of the frequency doubling rather than period doubling.