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A vortex sheet during roll-up and the braid regions between adjacent vortices
in a shear flow are typical examples of shear layers stretched along the streamwise
direction. These situations can be simply described by the following velocity field :

U-= (756 + Up(t) et (%) vy, 0) , (1)

where erf is the error function and
Uo(t) = exp(—1) ,
a(t) = \Jexp(—29) + 2(1 — exp(—271)) /(1 Re) .

Here, both initial width and initial velocity difference of the shear flow are normal-
ized. Therefore the basic flow evolution depends only on two parameters: the strain
rate v (assumed uniform and constant) and the Reynolds number Re.

The goal of the paper is to study the 2D stability properties of such a flow. For
this purpose, we search the 2D perturbations which maximize the gain of energy
after a time t;. These perturbations are the so-called optimal perturbations of a
generalized stability analysis [1]. They naturally depend on the value tf. For an
unstretched non-viscous shear layer (y = 0, Re = oo) and large ty, this analysis
is equivalent to a normal mode analysis. For finite time t;, optimal perturbations
are usually associated with transient effects: the gain is larger than one would have
obtained with the most unstable mode alone.

For stretched viscous shear layer, the time-dependence of the basic flow forbid
any normal mode analysis. Maximizing a gain for the perturbation amplitude is
therefore a natural approach to study the linear stability of such a flow. Moreover,
this approach has the advantage to capture both the time-variation effects of the
basic flow and transient effects associated with the non-self-adjoint character of the
evolution operator.

Numerical results are obtained by a pseudo-spectral integration of the pertur-
bation equations using a similar iterative technique as in [2] to get the optimal
perturbation. Typical results for the gain are displayed on figure 1. This figure
demonstrates two characteristics: large energy gains are obtained and the opti-
mal streamwise wavenumber increases as v grows. Other numerical results will be
presented as well as asymptotic results obtained in the limit of small v and large
Reynolds numbers.

The results will be also applied to the two examples cited above and compared
with other available data.
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Figure 1: Energy gain versus perturbation streamwise wavenumber for t; = 9, Re = 10000
and v = 0.01 (solid line), v = 0.05 (dashed line) and v = 0.1 (dotted line). The stars are
G = exp(o(k)ty) where o(k) is the growth rate for a non-diffusing unstretched shear layer.
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